(1)熟悉 Python 语言、了解一个深度学习框架(Pytorch、Tensorflow 或 MXNet);(2) 熟悉简单的机器学习模型,如 LR、SVM、HMM、正则化等;(3) 熟悉简单的深度学习模型,如 word2vec、CNN、RNN;
目录
1.Pytorch
1.1 nn.Module类
1.2简易神经网络
1.3 PyTorch 之 torch.nn
2.机器学习模型
3.深度学习模型
首先安装torch
和torchvision
包。
是一个基于Python的科学计算包,目标用户有两类
张量(Tensors):Tensor,即张量,是PyTorch中的基本操作对象,可以看做是包含单一数据类型元素的多维矩阵。从使用角度来看,Tensor与NumPy的ndarrays非常类似,相互之间也可以自由转换,只不过Tensor还支持GPU的加速。
官方文档:torch — PyTorch 2.0 documentation
参考博客:狂肝两万字带你用pytorch搞深度学习!!!_写Bug那些事的博客-CSDN博客
torch.autograd库虽然实现了自动求导与梯度反向传播,但如果我们要完成一个模型的训练,仍需要手写参数的自动更新、训练过程的控制等,还是不够便利。为此,PyTorch进一步提供了集成度更高的模块化接口torch.nn,该接口构建于Autograd之上,提供了网络模组、优化器和初始化策略等一系列功能。
nn.Module是PyTorch提供的神经网络类,并在类中实现了网络各层的定义及前向计算与反向传播机制。在实际使用时,如果想要实现某个神经网络,只需继承nn.Module,在初始化中定义模型结构与参数,在函数forward()中编写网络前向过程即可。
1.nn.Parameter函数
2.forward()函数与反向传播
3.多个Module的嵌套
4.nn.Module与nn.functional库
5.nn.Sequential()模块
#这里用torch.nn实现一个MLP
from torch import nn
class MLP(nn.Module):
def __init__(self, in_dim, hid_dim1, hid_dim2, out_dim):
super(MLP, self).__init__()
self.layer = nn.Sequential(
nn.Linear(in_dim, hid_dim1),
nn.ReLU(),
nn.Linear(hid_dim1, hid_dim2),
nn.ReLU(),
nn.Linear(hid_dim2, out_dim),
nn.ReLU()
)
def forward(self, x):
x = self.layer(x)
return x
下面我们用torch搭一个简易神经网络:
1、我们设置输入节点为1000,隐藏层的节点为100,输出层的节点为10
2、输入100个具有1000个特征的数据,经过隐藏层后变成100个具有10个分类结果的特征,然后将得到的结果后向传播
import torch
batch_n = 100#一个批次输入数据的数量
hidden_layer = 100
input_data = 1000#每个数据的特征为1000
output_data = 10
x = torch.randn(batch_n,input_data)
y = torch.randn(batch_n,output_data)
w1 = torch.randn(input_data,hidden_layer)
w2 = torch.randn(hidden_layer,output_data)
epoch_n = 20
lr = 1e-6
for epoch in range(epoch_n):
h1=x.mm(w1)#(100,1000)*(1000,100)-->100*100
print(h1.shape)
h1=h1.clamp(min=0)
y_pred = h1.mm(w2)
loss = (y_pred-y).pow(2).sum()
print("epoch:{},loss:{:.4f}".format(epoch,loss))
grad_y_pred = 2*(y_pred-y)
grad_w2 = h1.t().mm(grad_y_pred)
grad_h = grad_y_pred.clone()
grad_h = grad_h.mm(w2.t())
grad_h.clamp_(min=0)#将小于0的值全部赋值为0,相当于sigmoid
grad_w1 = x.t().mm(grad_h)
w1 = w1 -lr*grad_w1
w2 = w2 -lr*grad_w2
torch.nn.Sequential类是torch.nn中的一种序列容器,通过在容器中嵌套各种实现神经网络模型的搭建,最主要的是,参数会按照我们定义好的序列自动传递下去。
torch.nn.Linear类用于定义模型的线性层,即完成前面提到的不同的层之间的线性变换。 线性层接受的参数有3个:分别是输入特征数、输出特征数、是否使用偏置,默认为True,使用torch.nn.Linear类,会自动生成对应维度的权重参数和偏置,对于生成的权重参数和偏置,我们的模型默认使用一种比之前的简单随机方式更好的参数初始化方式。
torch.nn.ReLU属于非线性激活分类,在定义时默认不需要传入参数。当然,在torch.nn包中还有许多非线性激活函数类可供选择,比如PReLU、LeaKyReLU、Tanh、Sigmoid、Softmax等
torch.nn.MSELoss类使用均方误差函数对损失值进行计算,定义类的对象时不用传入任何参数,但在使用实例时需要输入两个维度一样的参数方可进行计算。
torch.nn.L1Loss类使用平均绝对误差函数对损失值进行计算,定义类的对象时不用传入任何参数,但在使用实例时需要输入两个维度一样的参数方可进行计算。
torch.nn.CrossEntropyLoss类用于计算交叉熵,定义类的对象时不用传入任何参数,但在使用实例时需要输入两个满足交叉熵的计算条件的参数。
torchvision 是PyTorch中专门用来处理图像的库。这个包中有四个大类。
torchvision.datasets:torchvision.datasets可以实现对一些数据集的下载和加载如MNIST可以用torchvision.datasets.MNIST COCO、ImageNet、CIFCAR等都可用这个方法下载和载入
torchvision.models:torchvision.models 中为我们提供了已经训练好的模型,让我们可以加载之后,直接使用
torchvision.transforms:有大量数据变换类
torchvision.utils:torch.utils.data.DataLoader类中, dataset参数指定我们载入的数据集的名称
LR模型:逻辑回归模型,参考:【算法岗求职笔记】逻辑回归(Logistic Regession,LR) · 十问十答_AI蜗牛车的博客-CSDN博客
SVM:支持向量机(SVM)是一类按监督学习方式对数据进行二元分类的广义线性分类器,其决策边界是对学习样本求解的最大边距超平面,可以将问题化为一个求解凸二次规划的问题。参考:机器学习:支持向量机(SVM)_燕双嘤的博客-CSDN博客
HMM:隐马尔可夫,参考双向循环神经网络(隐马尔可夫模型)_流萤数点的博客-CSDN博客
正则化:Regularization,中文翻译过来可以称为正则化,或者是规范化。什么是规则?闭卷考试中不能查书,这就是规则,一个限制。同理,在这里,规则化就是说给损失函数加上一些限制,通过这种规则去规范他们再接下来的循环迭代中,不要自我膨胀。