2-利用OpenCV来进行图片的灰度处理

本篇本章介绍4种方法来进行图片的灰度处理。

方法一,利用OpenCV种的imread

import cv2
img0 = cv2.imread('2.jpg',0)
img1 = cv2.imread('2.jpg',1)
print(img0.shape)  #没有维度
print(img1.shape)
cv2.imshow('src',img0)
cv2.waitKey(0)
打印结果
(448, 400)
(448, 400, 3)

这里可以发现,灰度处理的图片没有维度

方法二,利用OpenCV种的cvtColor 颜色空间转换

import cv2
img = cv2.imread('2.jpg',1)
#颜色空间转换  1 数据  2 BGR 
dst = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) 
cv2.imshow('dst',dst)
cv2.waitKey(0)

方法3 用RGB 均值来做灰度

import cv2
import numpy as np
img = cv2.imread('2.jpg',1)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
# RGB R=G=B = gray (R+G+B)/3  求RGB的平均值
dst = np.zeros((height,width,3),np.uint8)
for i in range(0,height):
    for j in range(0,width):
        (b,g,r) = img[i,j]
        gray = (int(b)+int(g)+int(r))/3
        dst[i,j] = np.uint8(gray)
cv2.imshow('dst',dst)
cv2.waitKey(0)

方法4 gray = r0.299+g0.587+b*0.114 利用这个公式来做

import cv2
import numpy as np
img = cv2.imread('2.jpg',1)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
# RGB R=G=B = gray (R+G+B)/3
dst = np.zeros((height,width,3),np.uint8)
for i in range(0,height):
    for j in range(0,width):
        (b,g,r) = img[i,j]
        b = int(b)
        g = int(g)
        r = int(r)
        gray =  r*0.299+g*0.587+b*0.114
        dst[i,j] = np.uint8(gray)
cv2.imshow('dst',dst)
cv2.waitKey(0)

最终效果图

效果图.png

你可能感兴趣的:(2-利用OpenCV来进行图片的灰度处理)