- 使用DashVector作为LangChain中的VectorStore插件
dgay_hua
langchainpython
背景介绍DashVector是一个支持高维稠密和稀疏向量的全托管向量数据库服务,支持实时插入和过滤搜索。它能够自动扩展并适应不同的应用需求。这使得DashVector在需要高效处理和搜索向量数据的应用中非常有价值,特别是在自然语言处理和推荐系统等领域。本篇文章将展示如何在LangChain生态系统中利用DashVector。主要内容包括DashVector的安装和配置,以及其作为VectorSto
- 使用Hugging Face Text Embeddings Inference进行文本嵌入推理
dgay_hua
python
在自然语言处理中,文本嵌入是一个重要的技术,它将文本转换为可以由机器学习算法处理的数字向量。在这篇文章中,我们将探讨如何使用HuggingFace的TextEmbeddingsInference(TEI)工具包来部署和服务开源文本嵌入和序列分类模型。TEI支持高性能提取,包括常用的嵌入模型如FlagEmbedding、Ember、GTE和E5。技术背景介绍文本嵌入在现代NLP任务中起着关键作用,它
- Objective-C实现NLP中文分词(附完整源码)
源代码大师
Objective-C实战教程自然语言处理objective-c中文分词
Objective-C实现NLP中文分词实现中文分词(NLP中的重要任务之一)在Objective-C中需要处理文本的切分和识别词语边界。尽管Objective-C在自然语言处理(NLP)领域并不常见,但通过合理的算法设计和数据结构,可以实现基本的中文分词功能。本文将介绍如何使用基于字典的最大匹配算法(MaximumMatchingAlgorithm),例如正向最大匹配(ForwardMaximu
- 最全中文对话数据集(不定期更新)
数据猎手小k
人工智能大数据
随着人工智能技术的发展,自然语言处理(NLP)领域中的对话系统逐渐成为研究的热点。为了提升对话系统的性能,需要大量的高质量对话数据来训练和优化模型。然而,中文对话数据相对于英文来说较为稀缺,且质量参差不齐,这限制了中文对话系统的发展。因此,构建大规模、高质量的中文对话数据集成为了一个迫切的需求。一、研究意义1、推动中文NLP发展:大规模高质量的中文对话数据集能够为中文自然语言处理领域的研究提供基础
- DeepSeek全栈接入指南:从零到生产环境的深度实践
量子纠缠BUG
DeepSeek部署AIDeepSeek人工智能深度学习机器学习
第一章:DeepSeek技术体系全景解析1.1认知DeepSeek技术生态DeepSeek作为新一代人工智能技术平台,构建了覆盖算法开发、模型训练、服务部署的全链路技术栈。其核心能力体现在:1.1.1多模态智能引擎自然语言处理:支持文本生成(NLG)、语义理解(NLU)、情感分析等计算机视觉:提供图像分类、目标检测、OCR识别等CV能力语音交互:包含语音识别(ASR)、语音合成(TTS)及声纹识别
- 微调 LLM (RLHF + DPO)
人工智能
微调LLM(RLHF+DPO)使用强化学习(RL)根据人类反馈微调大语言模型(即RLHF)的方法,以及一种更有效的改进方法(即DPO)。一、GPT-3与InstructGPT2020年,OpenAI发布了GPT-3,这是一种大型语言模型(LLM),只需查看几个示例即可执行任意自然语言处理(NLP)任务。这包括为模型编写巧妙的输入(即提示),使其执行所需的任务(例如翻译、问答和完形填空任务)。尽管G
- UNet:UNet在自然环境监测中的应用案例_2024-07-24_09-14-11.Tex
chenjj4003
游戏开发2深度学习计算机视觉人工智能性能优化游戏前端javascript
UNet:UNet在自然环境监测中的应用案例UNet模型概述UNet是一种广泛应用于图像分割任务的卷积神经网络模型,由OlafRonneberger、PhilippFischer和ThomasBrox在2015年提出。其设计初衷是为了在生物医学图像分析中进行细胞和组织的精确分割,但因其高效性和准确性,迅速在自然环境监测、遥感图像分析、卫星图像处理等领域找到了应用。架构原理UNet模型采用了一个编码
- 算法1-3 全排列问题
咚咚轩
dfs
题目描述按照字典序输出自然数1到n所有不重复的排列,即n的全排列,要求所产生的任一数字序列中不允许出现重复的数字。输入格式一个整数n。输出格式由1∼n组成的所有不重复的数字序列,每行一个序列。每个数字保留5个场宽。输入输出样例输入#13输出#1123132213231312321说明/提示1≤n≤9。#include#includeusingnamespacestd;intn;inta[12];i
- 注意力机制(Attention Mechanism)详细分类与介绍
Jason_Orton
分类数据挖掘人工智能
注意力机制(AttentionMechanism)是近年来在深度学习中非常流行的一种技术,特别是在自然语言处理(NLP)、计算机视觉等任务中,具有显著的效果。它的核心思想是模仿人类在处理信息时的注意力分配方式,根据不同部分的重要性给予不同的关注程度。1.注意力机制的背景与动机在传统的深度学习模型(如RNN、CNN等)中,信息处理通常是按照固定的规则和结构进行的,模型对输入的各个部分给予相同的关注。
- 策略模式环境类的实现方式对比
-代号9527
JavaDev策略模式
文章目录1、策略模式2、聚合策略类实现方式一3、聚合策略类实现方式二4、对比5、补充:ApplicationContextAware接口1、策略模式近期工作中,需要处理4.x和5.x两个版本的数据,所以自然想到的是策略模式,写一个抽象类,然后两个版本分别实现抽象类,以后也好扩展。publicinterfaceClusterMetaDataProcessor{voidprocessData();}p
- AI之DeepSeek
james二次元
AI人工智能AIDeepSeek
DeepSeek是一个开源的基于深度学习的搜索引擎,用于在大规模数据中进行高效的内容检索和相似度搜索。它利用深度学习技术,特别是嵌入(embedding)技术,以改进传统搜索引擎中基于关键词的匹配方式,能够对复杂的查询和内容进行更精确和智能的理解。DeepSeek主要侧重于基于语义的搜索,通过将数据(例如文本、图像、音频等)转换为向量表示,来实现更为精准的相似度搜索。它的应用场景包括但不限于自然语
- 天气API接口在日常生活与商业决策中的应用
FB13713612741
python
天气,作为自然界中最不可控却又对人类活动影响巨大的因素之一,其变化无常的特性使得人们长期以来都在寻找预测和控制它的方法。随着科技的进步,尤其是互联网和大数据技术的发展,天气信息的获取和应用变得更加便捷和高效。天气API接口,作为连接天气数据与各类应用的桥梁,正逐步渗透到我们日常生活的方方面面,并在商业决策中发挥着越来越重要的作用。一、天气API接口的基本概念与技术原理天气API接口是一种提供天气数
- 深度学习-自学手册
谁用了尧哥这个昵称
AI深度学习
人工智能机器学习神经网络前馈神经网络:没有回路的反馈神经网络:有回路的DNN深度神经网络CNN卷积神经网络RNN循环神经网络LSTM是RNN的一种,长短期记忆网络自然语言处理神经网络神经元-分类器Hebb学习方法,随机–类似SGD一篇神经网络入门BP反向传播,表示很复杂的函数/空间分布从最后一层往前调整参数,反复循环该操作y=a(wx+b)x输入y输出a激活函
- 自然语言处理(Natural Language Processing, NLP)的主要应用及核心技术
彬彬侠
自然语言处理NLP自然语言处理
自然语言处理(NLP)是人工智能(AI)的一个重要分支,旨在让计算机能够理解、生成和处理人类语言。NLP在多个领域有着广泛的应用,并结合了多种先进的技术,包括机器学习(ML)、深度学习(DL)、统计模型以及规则方法。1.自然语言处理的主要应用1.1机器翻译(MachineTranslation,MT)应用场景:在线翻译:GoogleTranslate、DeepL、BaiduTranslate。跨语
- 如何选择AI外呼产品?技术人必看的五大核心指标
MARS_AI_
人工智能自然语言处理语音识别信息与通信nlp
随着AI技术的快速发展,AI外呼产品逐渐成为企业客户沟通与业务拓展的利器。然而,面对市场上琳琅满目的解决方案,如何选择一款真正适合自身业务的AI外呼产品?本文从技术视角出发,结合实际应用场景,总结出五大核心评估指标,助你科学决策。一、技术核心:从算法到落地的关键AI外呼产品的核心能力取决于其底层技术架构,尤其是自然语言处理(NLP)与大模型技术的应用水平。以下是不同技术方案的对比:技术选型建议:•
- 【变化:海平面上升,城市下沉 关键字摘要】
严文文-Chris
科学思维修炼科学思维
城市下沉的两个因素自然因素分为两个方面,一弱一强。我们先说说弱的方面。弱的方面指的是海平面的上升。这是大家很熟悉的,因为全球变暖会导致冰山融化。如果南极的冰全部融化,会导致全球海平面平均上升66米。而北京、上海、广州、纽约、伦敦的海拔分别是31米、5米、6米、10米、11米,没有一个超过66米的。其实,当前世界最主要的100个城市,海拔都在70米以下。于是,南极的冰全部融化后,这些城市必然消失。不
- 29、深度学习-自学之路-深入理解-NLP自然语言处理-做一个完形填空,让机器学习更多的内容程序展示
小宇爱
深度学习-自学之路深度学习自然语言处理机器学习
importsys,random,mathfromcollectionsimportCounterimportnumpyasnpnp.random.seed(1)random.seed(1)f=open('reviews.txt')raw_reviews=f.readlines()f.close()tokens=list(map(lambdax:(x.split("")),raw_reviews)
- 泛微全面接入DeepSeek大模型,助力组织升级数智化应用场景
泛微OA办公系统
泛微DeepSeek
近日,泛微公司旗下所有产品全面接入DeepSeek大模型,借助泛微2024年发布的数智大脑Xiaoe.AI,可快捷方便为客户搭建“DeepSeek大模型+专业小模型+智能体”的数智底座,并可量身定制更安全、高效、国产化的数智化解决方案,助力组织管理与业务、财务一体化数智运营升级。在接入DeepSeek大模型后,泛微将借助DeepSeek强大的自然语言处理、机器学习、推理等能力,显著提升泛微各项产品
- 深度学习的前沿与挑战:从基础到最新进展
Jason_Orton
深度学习人工智能数据挖掘机器学习
目录引言什么是深度学习?深度学习的工作原理深度学习的关键技术1.卷积神经网络(CNN)2.循环神经网络(RNN)3.生成对抗网络(GAN)4.变分自编码器(VAE)5.自注意力机制与Transformer深度学习的应用1.计算机视觉2.自然语言处理(NLP)3.语音识别与合成4.推荐系统5.医学影像分析深度学习面临的挑战结语引言深度学习(DeepLearning)近年来成为人工智能领域的核心技术之
- 巨型计算机是未来新型计算机吗,未来计算机技术展望
国观智库
巨型计算机是未来新型计算机吗
未来计算机技术展望1、前言计算机的发展将趋向巨型化、微型化、网络化多媒体化和智能化。自从1944年世界上第一台电子计算机诞生以来,计算机技术迅猛发展,传统计算机的性能受到挑战,开始从基本原理上寻找计算机发展的突破口,新型计算机的研发应运而生。未来量子、光子、分子和纳米计算机将具有感知、思考、判断、学习以及一定的自然语言能力,使计算机进人人工智能时代。这种新型计算机将推动新一轮计算技术革命,对人类社
- 深度学习:从神经网络到智能应用
Jason_Orton
深度学习神经网络人工智能机器学习
目录引言一.什么是深度学习?二.深度学习的基本原理1.神经网络的组成2.激活函数3.反向传播(Backpropagation)三.深度学习的常见模型四.深度学习的应用场景五.深度学习的挑战与未来结语引言深度学习(DeepLearning)作为机器学习的一个分支,近年来在人工智能领域取得了革命性的进展。无论是语音识别、图像识别,还是自动驾驶、自然语言处理,深度学习都在推动着技术的发展和行业的变革。那
- 如何利用GPT创作诗歌与短篇故事赚钱
在当今社会,人工智能技术已经广泛应用于各个领域,其中包括创意写作。GenerativePre-trainedTransformer(GPT)作为一种强大的自然语言处理工具,为普通人提供了创作诗歌和短篇故事的新途径,并能够通过这些创作实现赚钱的机会。如何利用GPT进行诗歌和短篇故事创作?生成创作:GPT能够根据输入的提示或主题生成连贯、富有想象力的文本。对于诗歌,你可以给出一些词语或主题,让GPT根
- 如何实现uniapp编译的微信小程序做可回溯视频
bug菌¹
全栈Bug调优(实战版)uni-app微信小程序音视频可回溯视频uniapp编译
本文收录于《全栈Bug调优(实战版)》专栏,主要记录项目实战过程中所遇到的Bug或因后果及提供真实有效的解决方案,希望能够助你一臂之力,帮你早日登顶实现财富自由;同时,欢迎大家关注&&收藏&&订阅!持续更新中,up!up!up!!全文目录:问题描述解决方案1.**视频录制与回溯原理**2.**具体实现步骤**2.1录制视频播放状态与用户操作2.2回放过程2.3数据存储与管理2.4界面展示3.**注
- 一文带你了解无线电磁波频谱:从极低频到极高频
wljslmz
网络技术无线电
无线电磁波是自然界中广泛存在的一种能量形式,频率范围从3赫兹(Hz)到300吉赫兹(GHz),对应的波长从上百公里到不到1毫米。它们广泛应用于通信、广播、导航、医疗、军事等领域,是现代社会不可或缺的技术基础。本文将详细解析无线电磁波频谱的划分,从极低频到极高频,逐一介绍各频段的特性及应用场景。极低频(ELF:3Hz–30Hz)特性:波长:10,000公里至100,000公里。穿透性:具有极强的穿透
- 深度学习批次数据处理的理解
_DCG_
计算机视觉深度学习人工智能
基础介绍在计算机视觉深度学习网络中,在训练阶段数据输入通常是一个批次,即不是一次输入单张图片,而是一次性输入多张图片,而神经网络的结构内部一次只能处理一张图片,这时候很自然就会考虑为什么要这样的输入?神经网络是如何处理多个数据的,下面从硬件架构的角度去分析处理。GPU硬件架构GPU的硬件架构设计是批处理能够高效运行的关键原因之一。GPU现阶段一般采用SIMT架构,它的特点如下:SIMT(Singl
- 【AI视野·今日NLP 自然语言处理论文速览 第八十期】Fri, 1 Mar 2024
hitrjj
LLMNLPPapers人工智能自然语言处理NLPLLM大语言模型
AI视野·今日CS.NLP自然语言处理论文速览Fri,1Mar2024Totally67papers上期速览✈更多精彩请移步主页DailyComputationandLanguagePapersLooseLIPSSinkShips:AskingQuestionsinBattleshipwithLanguage-InformedProgramSamplingAuthorsGabrielGrand,V
- python object对象
weixin_34306676
pythonjavascriptViewUI
动态语言的对象属性既然都是动态语言,自然python和熟知的JavaScript很像,建一个空对象用来存放所有的数据,看看js:vardata={};data.name='CooMark';data.age=30;但是在python中这样却不行,说好的动态属性呢?data=object()data.name='CooMark'#AttributeError:'object'objecthasnoa
- 当我的同事先用了通义灵码DeepSeek-R1模型……
云原生
当你发现同事的代码生成速度比你快,注释比你多,甚至还能智能问答时,别慌,他可能只是比你先用了通义灵码的DeepSeek-R1模型。近日,通义灵码上线DeepSeek-R1模型选择功能,为开发者们提供更懂中文,更擅复杂场景的AI编码助手,安装只需30秒,在IDEA插件市场搜索“通义”,认准排名第一的插件——最新2.1.0版本已支持多个模型,具备实时续写、自然语言生成、智能问答等多项能力。我们选择阿里
- DeepSeek API是什么
兔兔爱学习兔兔爱学习
大模型pythonprompt算法
DeepSeekAPI是一个提供人工智能服务的接口,它允许开发者通过简单的API调用来实现各种高级的自然语言处理(NLP)任务,如文本生成、对话系统、文本摘要、问答系统等。DeepSeekAPI通常基于先进的大模型,如Transformer架构的模型,提供了强大的语言理解和生成能力。DeepSeekAPI的特点易于集成:开发者可以通过简单的HTTP请求调用API,无需深入了解底层模型的具体实现。高
- DeepSeek各模型现有版本对比分析
墨染夜雨笺
DeepSeekAI
文章目录一、基础模型系列:V1到V3的演进二、专用模型系列:推理与多模态三、版本选型与商业化趋势DeepSeek作为最近特别火爆的模型,本文将对DeepSeek现有的主要版本进行对比分析,涵盖参数规模、训练数据、功能改进、应用场景和性能表现等方面。一、基础模型系列:V1到V3的演进DeepSeek-V1发布时间:2024年1月特点:首代模型,专注于自然语言处理(NLP)和编码任务,支持128K标记
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s