对于抠图,比较简单的方法是图像分割,这是很老的方法,但这其实算不上真正意义的抠图,因为他的主要目的是用于图像之间块与块的分割。典型的就是grabcut算法,opencv上面有相应的优化好的算法。还有一种就是对于前后景的分割,叫做Alpha Matting,这是抠图的主要实现方法,好的算法对头发丝也能处理得很好,最近主要实现了2010年的一篇论文《Shared Sampling for Real-Time Alpha Matting》,这是比较出名的效果比较好的经典前后景分割算法。
这部分原理不是很麻烦,网上随便一搜就能搜到。这里主要借助opencv的接口函数grabcut去实现。grabcut是在graph cut基础上改进的一种图像分割算法,网上有很多grabcut方面的论文,opencv的grabcut算法也是在此基础上优化封装的。这种方法的实现,需要人工交互框出一个矩形表示待处理的区域,矩形外都被视为背景,还可以在人工交互上用画笔绘画,绘画区域表示前景或者后景。
代码如下:
#include
#include
#include
#include
#include "opencv2/imgproc/imgproc.hpp"
using namespace std;
using namespace cv;
static void help()
{
cout << "\nThis program demonstrates GrabCut segmentation -- select an object in a region\n"
"and then grabcut will attempt to segment it out.\n"
"Call:\n"
"./grabcut \n"
"\nSelect a rectangular area around the object you want to segment\n" <<
"\nHot keys: \n"
"\tESC - quit the program\n"
"\tr - restore the original image\n"
"\tn - next iteration\n"
"\n"
"\tleft mouse button - set rectangle\n"
"\n"
"\tCTRL+left mouse button - set GC_BGD pixels\n"
"\tSHIFT+left mouse button - set CG_FGD pixels\n"
"\n"
"\tCTRL+right mouse button - set GC_PR_BGD pixels\n"
"\tSHIFT+right mouse button - set CG_PR_FGD pixels\n" << endl;
}
const Scalar RED = Scalar(0, 0, 255);
const Scalar PINK = Scalar(230, 130, 255);
const Scalar BLUE = Scalar(255, 0, 0);
const Scalar LIGHTBLUE = Scalar(255, 255, 160);
const Scalar GREEN = Scalar(0, 255, 0);
const int BGD_KEY = CV_EVENT_FLAG_CTRLKEY; //Ctrl键
const int FGD_KEY = CV_EVENT_FLAG_SHIFTKEY; //Shift键
static void getBinMask(const Mat& comMask, Mat& binMask)
{
if (comMask.empty() || comMask.type() != CV_8UC1)
CV_Error(CV_StsBadArg, "comMask is empty or has incorrect type (not CV_8UC1)");
if (binMask.empty() || binMask.rows != comMask.rows || binMask.cols != comMask.cols)
binMask.create(comMask.size(), CV_8UC1);
binMask = comMask & 1; //得到mask的最低位,实际上是只保留确定的或者有可能的前景点当做mask
}
class GCApplication
{
public:
enum{ NOT_SET = 0, IN_PROCESS = 1, SET = 2 };
static const int radius = 2;
static const int thickness = -1;
void reset();
void setImageAndWinName(const Mat& _image, const string& _winName);
void showImage() const;
void mouseClick(int event, int x, int y, int flags, void* param);
int nextIter();
int getIterCount() const { return iterCount; }
private:
void setRectInMask();
void setLblsInMask(int flags, Point p, bool isPr);
const string* winName;
const Mat* image;
Mat mask;
Mat bgdModel, fgdModel;
uchar rectState, lblsState, prLblsState;
bool isInitialized;
Rect rect;
vector<Point> fgdPxls, bgdPxls, prFgdPxls, prBgdPxls;
int iterCount;
};
/*给类的变量赋值*/
void GCApplication::reset()
{
if (!mask.empty())
mask.setTo(Scalar::all(GC_BGD));
bgdPxls.clear(); fgdPxls.clear();
prBgdPxls.clear(); prFgdPxls.clear();
isInitialized = false;
rectState = NOT_SET; //NOT_SET == 0
lblsState = NOT_SET;
prLblsState = NOT_SET;
iterCount = 0;
}
/*给类的成员变量赋值而已*/
void GCApplication::setImageAndWinName(const Mat& _image, const string& _winName)
{
if (_image.empty() || _winName.empty())
return;
image = &_image;
winName = &_winName;
mask.create(image->size(), CV_8UC1);
reset();
}
/*显示4个点,一个矩形和图像内容,因为后面的步骤很多地方都要用到这个函数,所以单独拿出来*/
void GCApplication::showImage() const
{
if (image->empty() || winName->empty())
return;
Mat res;
Mat binMask;
if (!isInitialized)
image->copyTo(res);
else
{
getBinMask(mask, binMask);
image->copyTo(res, binMask); //按照最低位是0还是1来复制,只保留跟前景有关的图像,比如说可能的前景,可能的背景
}
vector<Point>::const_iterator it;
/*下面4句代码是将选中的4个点用不同的颜色显示出来*/
for (it = bgdPxls.begin(); it != bgdPxls.end(); ++it) //迭代器可以看成是一个指针
circle(res, *it, radius, BLUE, thickness);
for (it = fgdPxls.begin(); it != fgdPxls.end(); ++it) //确定的前景用红色表示
circle(res, *it, radius, RED, thickness);
for (it = prBgdPxls.begin(); it != prBgdPxls.end(); ++it)
circle(res, *it, radius, LIGHTBLUE, thickness);
for (it = prFgdPxls.begin(); it != prFgdPxls.end(); ++it)
circle(res, *it, radius, PINK, thickness);
/*画矩形*/
if (rectState == IN_PROCESS || rectState == SET)
rectangle(res, Point(rect.x, rect.y), Point(rect.x + rect.width, rect.y + rect.height), GREEN, 2);
imshow(*winName, res);
}
/*该步骤完成后,mask图像中rect内部是3,外面全是0*/
void GCApplication::setRectInMask()
{
assert(!mask.empty());
mask.setTo(GC_BGD); //GC_BGD == 0
rect.x = max(0, rect.x);
rect.y = max(0, rect.y);
rect.width = min(rect.width, image->cols - rect.x);
rect.height = min(rect.height, image->rows - rect.y);
(mask(rect)).setTo(Scalar(GC_PR_FGD)); //GC_PR_FGD == 3,矩形内部,为可能的前景点
}
void GCApplication::setLblsInMask(int flags, Point p, bool isPr)
{
vector<Point> *bpxls, *fpxls;
uchar bvalue, fvalue;
if (!isPr) //确定的点
{
bpxls = &bgdPxls;
fpxls = &fgdPxls;
bvalue = GC_BGD; //0
fvalue = GC_FGD; //1
}
else //概率点
{
bpxls = &prBgdPxls;
fpxls = &prFgdPxls;
bvalue = GC_PR_BGD; //2
fvalue = GC_PR_FGD; //3
}
if (flags & BGD_KEY)
{
bpxls->push_back(p);
circle(mask, p, radius, bvalue, thickness); //该点处为2
}
if (flags & FGD_KEY)
{
fpxls->push_back(p);
circle(mask, p, radius, fvalue, thickness); //该点处为3
}
}
/*鼠标响应函数,参数flags为CV_EVENT_FLAG的组合*/
void GCApplication::mouseClick(int event, int x, int y, int flags, void*)
{
// TODO add bad args check
switch (event)
{
case CV_EVENT_LBUTTONDOWN: // set rect or GC_BGD(GC_FGD) labels
{
bool isb = (flags & BGD_KEY) != 0,
isf = (flags & FGD_KEY) != 0;
if (rectState == NOT_SET && !isb && !isf)//只有左键按下时
{
rectState = IN_PROCESS; //表示正在画矩形
rect = Rect(x, y, 1, 1);
}
if ((isb || isf) && rectState == SET) //按下了alt键或者shift键,且画好了矩形,表示正在画前景背景点
lblsState = IN_PROCESS;
}
break;
case CV_EVENT_RBUTTONDOWN: // set GC_PR_BGD(GC_PR_FGD) labels
{
bool isb = (flags & BGD_KEY) != 0,
isf = (flags & FGD_KEY) != 0;
if ((isb || isf) && rectState == SET) //正在画可能的前景背景点
prLblsState = IN_PROCESS;
}
break;
case CV_EVENT_LBUTTONUP:
if (rectState == IN_PROCESS)
{
rect = Rect(Point(rect.x, rect.y), Point(x, y)); //矩形结束
rectState = SET;
setRectInMask();
assert(bgdPxls.empty() && fgdPxls.empty() && prBgdPxls.empty() && prFgdPxls.empty());
showImage();
}
if (lblsState == IN_PROCESS) //已画了前后景点
{
setLblsInMask(flags, Point(x, y), false); //画出前景点
lblsState = SET;
showImage();
}
break;
case CV_EVENT_RBUTTONUP:
if (prLblsState == IN_PROCESS)
{
setLblsInMask(flags, Point(x, y), true); //画出背景点
prLblsState = SET;
showImage();
}
break;
case CV_EVENT_MOUSEMOVE:
if (rectState == IN_PROCESS)
{
rect = Rect(Point(rect.x, rect.y), Point(x, y));
assert(bgdPxls.empty() && fgdPxls.empty() && prBgdPxls.empty() && prFgdPxls.empty());
showImage(); //不断的显示图片
}
else if (lblsState == IN_PROCESS)
{
setLblsInMask(flags, Point(x, y), false);
showImage();
}
else if (prLblsState == IN_PROCESS)
{
setLblsInMask(flags, Point(x, y), true);
showImage();
}
break;
}
}
/*该函数进行grabcut算法,并且返回算法运行迭代的次数*/
int GCApplication::nextIter()
{
if (isInitialized)
//使用grab算法进行一次迭代,参数2为mask,里面存的mask位是:矩形内部除掉那些可能是背景或者已经确定是背景后的所有的点,且mask同时也为输出
//保存的是分割后的前景图像
grabCut(*image, mask, rect, bgdModel, fgdModel, 1);
else
{
if (rectState != SET)
return iterCount;
if (lblsState == SET || prLblsState == SET)
grabCut(*image, mask, rect, bgdModel, fgdModel, 1, GC_INIT_WITH_MASK);
else
grabCut(*image, mask, rect, bgdModel, fgdModel, 1, GC_INIT_WITH_RECT);
isInitialized = true;
}
iterCount++;
bgdPxls.clear(); fgdPxls.clear();
prBgdPxls.clear(); prFgdPxls.clear();
return iterCount;
}
GCApplication gcapp;
static void on_mouse(int event, int x, int y, int flags, void* param)
{
gcapp.mouseClick(event, x, y, flags, param);
}
int main(int argc, char** argv)
{
string filename = "input.png";
Mat image = imread(filename, 1);
if (image.empty())
{
cout << "\n Durn, couldn't read image filename " << filename << endl;
return 1;
}
help();
const string winName = "image";
cvNamedWindow(winName.c_str(), CV_WINDOW_AUTOSIZE);
cvSetMouseCallback(winName.c_str(), on_mouse, 0);
gcapp.setImageAndWinName(image, winName);
gcapp.showImage();
clock_t start, end;
for (;;)
{
char c = cvWaitKey(0);
switch ((char)c)
{
case '\x1b':
cout << "Exiting ..." << endl;
goto exit_main;
case 'r':
cout << endl;
gcapp.reset();
gcapp.showImage();
break;
case 'n':
int iterCount = gcapp.getIterCount();
//cout << "<" << iterCount << "... ";
start = clock();
int newIterCount = gcapp.nextIter();
end = clock();
double endtime = (double)(end - start) / CLOCKS_PER_SEC;
cout << "NO." << newIterCount << ": " << endtime * 1000 << "ms" << endl;
if (newIterCount > iterCount)
{
gcapp.showImage();
//cout << newIterCount << ">" << endl;
}
else
cout << "rect must be determined>" << endl;
break;
}
}
exit_main:
cvDestroyWindow(winName.c_str());
return 0;
}
代码很简单,使用方法都有注释。核心就是grabcut函数。
下面是运行结果:
输入:
输出:
耗时:
No.1-No.7分别表示算法多次迭代,每次迭代的耗时,迭代次数越多,每次添加新的前后景标志的话,抠图效果会更好。可以看出这种算法的时间效果不太好。
这个算法是重点想介绍和实现的。主要实现了2010年的一篇论文《Shared Sampling for Real-Time Alpha Matting》,这是比较出名的效果比较好的经典前后景分割算法。
总结的手稿贴出一下:
Alpha matting算法研究的是如何将一幅图像中的前景信息和背景信息分离的问题,即抠图。我们把图像I分割成一个前景对象图像F,一个背景图像B和一个alpha matte α,于是就有了digital matting的数学定义: I=α×F+(1-α)×B。
算法的输入:原始图片,三分图(trimap)或“乱画图”(scribble)。
《Shared Sampling for Real-Time Alpha Matting》这篇论文中算法大致步骤如下:
(1)Expansion,针对用户的输入,对已知区域(前景或背景)进行小规模的扩展;
(2)Sample and Gather,对剩余的未知区域内的每个点按一定的规则取样,并选择出最佳的一对前景和背景取样点;
(3)Refinement,在一定的领域范围内,对未知区域内的每个点的最佳配对重新进行组合。
(4)Local Smoothing,对得到的前景和背景对以及透明度值进行局部平滑,以减少噪音。
关于这篇论文的源码给出下载地址:code
关于这篇论文的数据下载及论文原文地址:Shared Sampling for Real-Time Alpha Matting
不过下载下来后运行的时候出了一点小问题,主要就是mat、cvmat、IplImage之间数据传递的问题,把他们统一改成mat类型就没问题了。
下面是运行结果:
输入:
输出:
耗时:
可以看到使用它的数据效果还是很好,不过他也有缺点,就是应用的抠图场合的背景应该比较简单。