抠图算法-Alpha Matting

目录

    • 概述
    • graph cut
    • Alpha Matting

概述

对于抠图,比较简单的方法是图像分割,这是很老的方法,但这其实算不上真正意义的抠图,因为他的主要目的是用于图像之间块与块的分割。典型的就是grabcut算法,opencv上面有相应的优化好的算法。还有一种就是对于前后景的分割,叫做Alpha Matting,这是抠图的主要实现方法,好的算法对头发丝也能处理得很好,最近主要实现了2010年的一篇论文《Shared Sampling for Real-Time Alpha Matting》,这是比较出名的效果比较好的经典前后景分割算法。

graph cut

这部分原理不是很麻烦,网上随便一搜就能搜到。这里主要借助opencv的接口函数grabcut去实现。grabcut是在graph cut基础上改进的一种图像分割算法,网上有很多grabcut方面的论文,opencv的grabcut算法也是在此基础上优化封装的。这种方法的实现,需要人工交互框出一个矩形表示待处理的区域,矩形外都被视为背景,还可以在人工交互上用画笔绘画,绘画区域表示前景或者后景。
代码如下:

#include 
#include 
#include 
#include 
#include "opencv2/imgproc/imgproc.hpp"

using namespace std;
using namespace cv;

static void help()
{
	cout << "\nThis program demonstrates GrabCut segmentation -- select an object in a region\n"
		"and then grabcut will attempt to segment it out.\n"
		"Call:\n"
		"./grabcut \n"
		"\nSelect a rectangular area around the object you want to segment\n" <<
		"\nHot keys: \n"
		"\tESC - quit the program\n"
		"\tr - restore the original image\n"
		"\tn - next iteration\n"
		"\n"
		"\tleft mouse button - set rectangle\n"
		"\n"
		"\tCTRL+left mouse button - set GC_BGD pixels\n"
		"\tSHIFT+left mouse button - set CG_FGD pixels\n"
		"\n"
		"\tCTRL+right mouse button - set GC_PR_BGD pixels\n"
		"\tSHIFT+right mouse button - set CG_PR_FGD pixels\n" << endl;
}

const Scalar RED = Scalar(0, 0, 255);
const Scalar PINK = Scalar(230, 130, 255);
const Scalar BLUE = Scalar(255, 0, 0);
const Scalar LIGHTBLUE = Scalar(255, 255, 160);
const Scalar GREEN = Scalar(0, 255, 0);

const int BGD_KEY = CV_EVENT_FLAG_CTRLKEY;  //Ctrl键
const int FGD_KEY = CV_EVENT_FLAG_SHIFTKEY; //Shift键

static void getBinMask(const Mat& comMask, Mat& binMask)
{
	if (comMask.empty() || comMask.type() != CV_8UC1)
		CV_Error(CV_StsBadArg, "comMask is empty or has incorrect type (not CV_8UC1)");
	if (binMask.empty() || binMask.rows != comMask.rows || binMask.cols != comMask.cols)
		binMask.create(comMask.size(), CV_8UC1);
	binMask = comMask & 1;  //得到mask的最低位,实际上是只保留确定的或者有可能的前景点当做mask
}

class GCApplication
{
public:
	enum{ NOT_SET = 0, IN_PROCESS = 1, SET = 2 };
	static const int radius = 2;
	static const int thickness = -1;

	void reset();
	void setImageAndWinName(const Mat& _image, const string& _winName);
	void showImage() const;
	void mouseClick(int event, int x, int y, int flags, void* param);
	int nextIter();
	int getIterCount() const { return iterCount; }
private:
	void setRectInMask();
	void setLblsInMask(int flags, Point p, bool isPr);

	const string* winName;
	const Mat* image;
	Mat mask;
	Mat bgdModel, fgdModel;

	uchar rectState, lblsState, prLblsState;
	bool isInitialized;

	Rect rect;
	vector<Point> fgdPxls, bgdPxls, prFgdPxls, prBgdPxls;
	int iterCount;
};

/*给类的变量赋值*/
void GCApplication::reset()
{
	if (!mask.empty())
		mask.setTo(Scalar::all(GC_BGD));
	bgdPxls.clear(); fgdPxls.clear();
	prBgdPxls.clear();  prFgdPxls.clear();

	isInitialized = false;
	rectState = NOT_SET;    //NOT_SET == 0
	lblsState = NOT_SET;
	prLblsState = NOT_SET;
	iterCount = 0;
}

/*给类的成员变量赋值而已*/
void GCApplication::setImageAndWinName(const Mat& _image, const string& _winName)
{
	if (_image.empty() || _winName.empty())
		return;
	image = &_image;
	winName = &_winName;
	mask.create(image->size(), CV_8UC1);
	reset();
}

/*显示4个点,一个矩形和图像内容,因为后面的步骤很多地方都要用到这个函数,所以单独拿出来*/
void GCApplication::showImage() const
{
	if (image->empty() || winName->empty())
		return;

	Mat res;
	Mat binMask;
	if (!isInitialized)
		image->copyTo(res);
	else
	{
		getBinMask(mask, binMask);
		image->copyTo(res, binMask);  //按照最低位是0还是1来复制,只保留跟前景有关的图像,比如说可能的前景,可能的背景
	}

	vector<Point>::const_iterator it;
	/*下面4句代码是将选中的4个点用不同的颜色显示出来*/
	for (it = bgdPxls.begin(); it != bgdPxls.end(); ++it)  //迭代器可以看成是一个指针
		circle(res, *it, radius, BLUE, thickness);
	for (it = fgdPxls.begin(); it != fgdPxls.end(); ++it)  //确定的前景用红色表示
		circle(res, *it, radius, RED, thickness);
	for (it = prBgdPxls.begin(); it != prBgdPxls.end(); ++it)
		circle(res, *it, radius, LIGHTBLUE, thickness);
	for (it = prFgdPxls.begin(); it != prFgdPxls.end(); ++it)
		circle(res, *it, radius, PINK, thickness);

	/*画矩形*/
	if (rectState == IN_PROCESS || rectState == SET)
		rectangle(res, Point(rect.x, rect.y), Point(rect.x + rect.width, rect.y + rect.height), GREEN, 2);

	imshow(*winName, res);
}

/*该步骤完成后,mask图像中rect内部是3,外面全是0*/
void GCApplication::setRectInMask()
{
	assert(!mask.empty());
	mask.setTo(GC_BGD);   //GC_BGD == 0
	rect.x = max(0, rect.x);
	rect.y = max(0, rect.y);
	rect.width = min(rect.width, image->cols - rect.x);
	rect.height = min(rect.height, image->rows - rect.y);
	(mask(rect)).setTo(Scalar(GC_PR_FGD));    //GC_PR_FGD == 3,矩形内部,为可能的前景点
}

void GCApplication::setLblsInMask(int flags, Point p, bool isPr)
{
	vector<Point> *bpxls, *fpxls;
	uchar bvalue, fvalue;
	if (!isPr) //确定的点
	{
		bpxls = &bgdPxls;
		fpxls = &fgdPxls;
		bvalue = GC_BGD;    //0
		fvalue = GC_FGD;    //1
	}
	else    //概率点
	{
		bpxls = &prBgdPxls;
		fpxls = &prFgdPxls;
		bvalue = GC_PR_BGD; //2
		fvalue = GC_PR_FGD; //3
	}
	if (flags & BGD_KEY)
	{
		bpxls->push_back(p);
		circle(mask, p, radius, bvalue, thickness);   //该点处为2
	}
	if (flags & FGD_KEY)
	{
		fpxls->push_back(p);
		circle(mask, p, radius, fvalue, thickness);   //该点处为3
	}
}

/*鼠标响应函数,参数flags为CV_EVENT_FLAG的组合*/
void GCApplication::mouseClick(int event, int x, int y, int flags, void*)
{
	// TODO add bad args check
	switch (event)
	{
	case CV_EVENT_LBUTTONDOWN: // set rect or GC_BGD(GC_FGD) labels
	{
		bool isb = (flags & BGD_KEY) != 0,
			isf = (flags & FGD_KEY) != 0;
		if (rectState == NOT_SET && !isb && !isf)//只有左键按下时
		{
			rectState = IN_PROCESS; //表示正在画矩形
			rect = Rect(x, y, 1, 1);
		}
		if ((isb || isf) && rectState == SET) //按下了alt键或者shift键,且画好了矩形,表示正在画前景背景点
			lblsState = IN_PROCESS;
	}
	break;
	case CV_EVENT_RBUTTONDOWN: // set GC_PR_BGD(GC_PR_FGD) labels
	{
		bool isb = (flags & BGD_KEY) != 0,
			isf = (flags & FGD_KEY) != 0;
		if ((isb || isf) && rectState == SET) //正在画可能的前景背景点
			prLblsState = IN_PROCESS;
	}
	break;
	case CV_EVENT_LBUTTONUP:
		if (rectState == IN_PROCESS)
		{
			rect = Rect(Point(rect.x, rect.y), Point(x, y));   //矩形结束
			rectState = SET;
			setRectInMask();
			assert(bgdPxls.empty() && fgdPxls.empty() && prBgdPxls.empty() && prFgdPxls.empty());
			showImage();
		}
		if (lblsState == IN_PROCESS)   //已画了前后景点
		{
			setLblsInMask(flags, Point(x, y), false);    //画出前景点
			lblsState = SET;
			showImage();
		}
		break;
	case CV_EVENT_RBUTTONUP:
		if (prLblsState == IN_PROCESS)
		{
			setLblsInMask(flags, Point(x, y), true); //画出背景点
			prLblsState = SET;
			showImage();
		}
		break;
	case CV_EVENT_MOUSEMOVE:
		if (rectState == IN_PROCESS)
		{
			rect = Rect(Point(rect.x, rect.y), Point(x, y));
			assert(bgdPxls.empty() && fgdPxls.empty() && prBgdPxls.empty() && prFgdPxls.empty());
			showImage();    //不断的显示图片
		}
		else if (lblsState == IN_PROCESS)
		{
			setLblsInMask(flags, Point(x, y), false);
			showImage();
		}
		else if (prLblsState == IN_PROCESS)
		{
			setLblsInMask(flags, Point(x, y), true);
			showImage();
		}
		break;
	}
}

/*该函数进行grabcut算法,并且返回算法运行迭代的次数*/
int GCApplication::nextIter()
{
	if (isInitialized)
		//使用grab算法进行一次迭代,参数2为mask,里面存的mask位是:矩形内部除掉那些可能是背景或者已经确定是背景后的所有的点,且mask同时也为输出
		//保存的是分割后的前景图像
		grabCut(*image, mask, rect, bgdModel, fgdModel, 1);
	else
	{
		if (rectState != SET)
			return iterCount;

		if (lblsState == SET || prLblsState == SET)
			grabCut(*image, mask, rect, bgdModel, fgdModel, 1, GC_INIT_WITH_MASK);
		else
			grabCut(*image, mask, rect, bgdModel, fgdModel, 1, GC_INIT_WITH_RECT);

		isInitialized = true;
	}
	iterCount++;

	bgdPxls.clear(); fgdPxls.clear();
	prBgdPxls.clear(); prFgdPxls.clear();

	return iterCount;
}

GCApplication gcapp;

static void on_mouse(int event, int x, int y, int flags, void* param)
{
	gcapp.mouseClick(event, x, y, flags, param);
}

int main(int argc, char** argv)
{

	string filename = "input.png";
	Mat image = imread(filename, 1);
	if (image.empty())
	{
		cout << "\n Durn, couldn't read image filename " << filename << endl;
		return 1;
	}

	help();

	const string winName = "image";
	cvNamedWindow(winName.c_str(), CV_WINDOW_AUTOSIZE);
	cvSetMouseCallback(winName.c_str(), on_mouse, 0);

	gcapp.setImageAndWinName(image, winName);
	gcapp.showImage();
	clock_t start, end;
	for (;;)
	{
		char c = cvWaitKey(0);
		switch ((char)c)
		{
		case '\x1b':
			cout << "Exiting ..." << endl;
			goto exit_main;
		case 'r':
			cout << endl;
			gcapp.reset();
			gcapp.showImage();
			break;
		case 'n':
			int iterCount = gcapp.getIterCount();
			//cout << "<" << iterCount << "... ";
			start = clock();
			int newIterCount = gcapp.nextIter();
			end = clock();
			double endtime = (double)(end - start) / CLOCKS_PER_SEC;
			cout << "NO." << newIterCount << ": " << endtime * 1000  << "ms" << endl;
			if (newIterCount > iterCount)
			{
				gcapp.showImage();
				//cout << newIterCount << ">" << endl;
			}
			else
				cout << "rect must be determined>" << endl;
			break;
		}
	}

exit_main:
	cvDestroyWindow(winName.c_str());
	return 0;
}

代码很简单,使用方法都有注释。核心就是grabcut函数。
下面是运行结果:
输入:
抠图算法-Alpha Matting_第1张图片
输出:
抠图算法-Alpha Matting_第2张图片
耗时:
抠图算法-Alpha Matting_第3张图片
No.1-No.7分别表示算法多次迭代,每次迭代的耗时,迭代次数越多,每次添加新的前后景标志的话,抠图效果会更好。可以看出这种算法的时间效果不太好。

Alpha Matting

这个算法是重点想介绍和实现的。主要实现了2010年的一篇论文《Shared Sampling for Real-Time Alpha Matting》,这是比较出名的效果比较好的经典前后景分割算法。
总结的手稿贴出一下:
抠图算法-Alpha Matting_第4张图片

Alpha matting算法研究的是如何将一幅图像中的前景信息和背景信息分离的问题,即抠图。我们把图像I分割成一个前景对象图像F,一个背景图像B和一个alpha matte α,于是就有了digital matting的数学定义: I=α×F+(1-α)×B。
算法的输入:原始图片,三分图(trimap)或“乱画图”(scribble)。
《Shared Sampling for Real-Time Alpha Matting》这篇论文中算法大致步骤如下:
(1)Expansion,针对用户的输入,对已知区域(前景或背景)进行小规模的扩展;
(2)Sample and Gather,对剩余的未知区域内的每个点按一定的规则取样,并选择出最佳的一对前景和背景取样点;
(3)Refinement,在一定的领域范围内,对未知区域内的每个点的最佳配对重新进行组合。
(4)Local Smoothing,对得到的前景和背景对以及透明度值进行局部平滑,以减少噪音。
关于这篇论文的源码给出下载地址:code
关于这篇论文的数据下载及论文原文地址:Shared Sampling for Real-Time Alpha Matting
不过下载下来后运行的时候出了一点小问题,主要就是mat、cvmat、IplImage之间数据传递的问题,把他们统一改成mat类型就没问题了。
下面是运行结果:
输入:
抠图算法-Alpha Matting_第5张图片
抠图算法-Alpha Matting_第6张图片
输出:
抠图算法-Alpha Matting_第7张图片
耗时:
抠图算法-Alpha Matting_第8张图片
可以看到使用它的数据效果还是很好,不过他也有缺点,就是应用的抠图场合的背景应该比较简单。

你可能感兴趣的:(Alpha,Matting)