python中矩阵的表示方法,稀疏矩阵在Python中的表示方法

对于一个矩阵而言,若数值为零的元素远远多于非零元素的个数,且非零元素分布没有规律时,这样的矩阵被称作稀疏矩阵;与之相反,若非零元素数目占据绝大多数时,这样的矩阵被称作稠密矩阵。

稀疏矩阵在工程应用中经常被使用,尤其是在通信编码和机器学习中。若编码矩阵或特征表达矩阵是稀疏矩阵时,其计算速度会大大提升。对于机器学习而言,稀疏矩阵应用非常广,比如在数据特征表示、自然语言处理等领域。用稀疏表示和工作在计算上代价很高,需要专门处理稀疏矩阵的表示和操作等,但是这些操作可以大幅提升性能。

Python中的稀疏矩阵

SciPy使用多个数据结构为创建稀疏矩阵提供了工具,以及将稠密矩阵转化为稀疏矩阵的工具。许多在Numpy数组上运行的线性代数Numpy和SciPy函数可以在SciPy稀疏数组上操作。此外,使用Numpy数据结构的机器学习库也可以在Scipy稀疏数组上操作,例如,用于机器学习的scikit-learning和用于深度学习的Keras。

Scipy中有可以表示的7种稀疏矩阵类型:csc_matrix: Compressed Sparse Column format

csr_matrix: Compressed Sparse Row format

bsr_matrix: Block Sparse Row format

lil_matrix: List of Lists format

dok_matrix: Dictionary of Keys format

coo_matrix: COOrdinate format (aka IJV, triplet format)

dia_matrix: DIAgonal format

下面介绍常用的几种稀疏矩阵类型:

coo_matrix

coo_matrix是最简单的存储方式。采用三个数组row、col和data保存非零元素的行下标,列下标与值。这三个数组的长度相同。一般来说,coo_matrix主要用来创建矩阵,因为coo_matrix无法对矩阵的元素进行增删改等操作,一旦创建之后,除了将之转换成其它格式的矩阵,几乎无法对其做任何操作和矩阵运算。>>> row = [0, 1, 2, 2]

>>> col = [0, 1, 2, 3]

>>> data = [1, 2, 3, 4]

# 生成coo格式的矩阵

>>> coo_mat = sparse.coo_matrix((data, (row, col)), shape=(4, 4))

>>> coo_mat

<4x4 sparse matrix of type ''

with 4 stored elements in COOrdinate format>

>>> coo_mat.toarray()

array([[1, 0, 0, 0],

[0, 2, 0, 0],

[0, 0, 3, 4],

[0, 0, 0, 0]])

优点:转换成其它存储格式很快捷简便,转换成csr/csc很快

允许重复的索引(例如在1行1列处存了值2.0,又在1行1列处存了值3.0,则转换成其它矩阵时就是2.0+3.0=5.0)

缺点:不支持切片和算术运算操作

dok_matrix与lil_matrix

dok_matrix和lil_matrix适用的场景是逐渐添加矩阵的元素。dok_matrix的策略是采用字典来记录矩阵中不为0的元素。所以字典的key存的是记录元素的位置信息的元祖,value是记录元素的具体值。>>> S = sparse.dok_matrix((5, 5), dtype=np.float32)

>>> for i in range(5):

for j in range(5):

S[i,j] = i+j # 更新元素

>>> S.toarray()

[[0. 1. 2. 3. 4.]

[1. 2. 3. 4. 5.]

[2. 3. 4. 5. 6.]

[3. 4. 5. 6. 7.]

[4. 5. 6. 7. 8.]]

优点:对于递增的构建稀疏矩阵很高效,比如定义该矩阵后,想进行每行每列更新值,可用该矩阵。当访问某个单元,只需要O(1)

缺点:不允许重复索引(coo中适用),但可以很高效的转换成coo后进行重复索引

lil_matrix则是使用两个列表存储非0元素。data保存每行中的非零元素,rows保存非零元素所在的列。这种格式也很适合逐个添加元素,并且能快速获取行相关的数据。>>> l = sparse.lil_matrix((4, 4))

>>> l[1, 1] = 1

>>> l[1, 3] =2

>>> l[2, 3] = 3

>>> l.toarray()

array([[0., 0., 0., 0.],

[0., 1., 0., 2.],

[0., 0., 0., 3.],

[0., 0., 0., 0.]])

优点:适合递增的构建成矩阵

转换成其它存储方式很高效

支持灵活的切片

缺点:当矩阵很大时,考虑用coo

算术操作,列切片,矩阵向量内积操作慢

csr_matrix与csc_matrix

csr_matrix是按行对矩阵进行压缩的,csc_matrix是按列对矩阵进行压缩的。通过row_offsets,column_indices,data来确定矩阵。column_indices,data与coo格式的列索引与数值的含义完全相同,row_offsets表示元素的行偏移量。

用如下例子说明:>>> indptr = np.array([0, 2, 3, 6]) # 元素的行偏移量

>>> indices = np.array([0, 2, 2, 0, 1, 2]) # 列索引

>>> data = np.array([1, 2, 3, 4, 5, 6])

>>> csr_matrix((data, indices, indptr), shape=(3, 3)).toarray()

array([[1, 0, 2],

[0, 0, 3],

[4, 5, 6]])

CSR格式常用于读入数据后进行稀疏矩阵计算。

CSR:

优点:高效的稀疏矩阵算术操作

高效的行切片

快速地矩阵向量内积操作

缺点:缓慢地列切片操作(可以考虑csc)

转换到稀疏结构代价较高(可以考虑lil,dok)CSC:

优点:

高效的稀疏矩阵算术操作

高效的列切片

快速地矩阵向量内积操作(不如csr,bsr块)

缺点:缓慢地行切片操作(可以考虑csr)

转换到稀疏结构代价较高(可以考虑lil,dok)

稀疏矩阵的存取

用save_npz保存单个稀疏矩阵>>> scipy.sparse.save_npz('sparse_matrix.npz', sparse_matrix)

>>> sparse_matrix = scipy.sparse.load_npz('sparse_matrix.npz')

你可能感兴趣的:(python中矩阵的表示方法)