代码随想录算法训练营第五十天|123.买卖股票的最佳时机Ⅲ、188.买卖股票的最佳时机Ⅳ

day50 2023/03/21

一、买卖股票的最佳时机Ⅲ

给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

分析如下:

1.确定dp数组以及下标的含义

一天一共就有五个状态,

  1. 没有操作 (其实我们也可以不设置这个状态)
  2. 第一次持有股票
  3. 第一次不持有股票
  4. 第二次持有股票
  5. 第二次不持有股票

dp[i][j]中 i表示第i天,j为 [0 - 4] 五个状态,dp[i][j]表示第i天状态j所剩最大现金。

需要注意:dp[i][1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区

例如 dp[i][1] ,并不是说 第i天一定买入股票,有可能 第 i-1天 就买入了,那么 dp[i][1] 延续买入股票的这个状态。

2.确定递推公式

达到dp[i][1]状态,有两个具体操作:

  • 操作一:第i天买入股票了,那么dp[i][1] = dp[i-1][0] - prices[i]
  • 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]

那么dp[i][1]究竟选 dp[i-1][0] - prices[i],还是dp[i - 1][1]呢?

一定是选最大的,所以 dp[i][1] = max(dp[i-1][0] - prices[i], dp[i - 1][1]);

同理dp[i][2]也有两个操作:

  • 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
  • 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]

所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])

同理可推出剩下状态部分:

dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);

dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);

3.dp数组如何初始化

第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0;

第0天做第一次买入的操作,dp[0][1] = -prices[0];

第0天做第一次卖出的操作,这个初始值应该是多少呢?

此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0][2] = 0;

第0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?

第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后再买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。

所以第二次买入操作,初始化为:dp[0][3] = -prices[0];

同理第二次卖出初始化dp[0][4] = 0;

4.确定遍历顺序

从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。

5.举例推导dp数组

以输入[1,2,3,4,5]为例

代码随想录算法训练营第五十天|123.买卖股票的最佳时机Ⅲ、188.买卖股票的最佳时机Ⅳ_第1张图片

代码如下: 

class Solution {
public:
    int maxProfit(vector& prices) {
        if (prices.size() == 0) return 0;
        vector> dp(prices.size(), vector(5, 0));
        dp[0][1] = -prices[0];
        dp[0][3] = -prices[0];
        for (int i = 1; i < prices.size(); i++) {
            dp[i][0] = dp[i - 1][0];
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
            dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
            dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
            dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
        }
        return dp[prices.size() - 1][4];
    }
};

二、买卖股票的最佳时机Ⅳ

给定一个整数数组 prices ,它的第 i 个元素 prices[i] 是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

分析如下:

1.确定dp数组以及下标的含义

本题其实依然可以用一个二维dp数组。

使用二维数组 dp[i][j] :第i天的状态为j,所剩下的最大现金是dp[i][j]

j的状态表示为:

  • 0 表示不操作
  • 1 第一次买入
  • 2 第一次卖出
  • 3 第二次买入
  • 4 第二次卖出
  • .....

除了0以外,偶数就是卖出,奇数就是买入

题目要求是至多有K笔交易,那么j的范围就定义为 2 * k + 1 就可以了。

2.确定递推公式

还要强调一下:dp[i][1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区

达到dp[i][1]状态,有两个具体操作:

  • 操作一:第i天买入股票了,那么dp[i][1] = dp[i - 1][0] - prices[i]
  • 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]

选最大的,所以 dp[i][1] = max(dp[i - 1][0] - prices[i], dp[i - 1][1]);

同理dp[i][2]也有两个操作:

  • 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
  • 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]

所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])

3.dp数组如何初始化

第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0;

第0天做第一次买入的操作,dp[0][1] = -prices[0];

第0天做第一次卖出的操作,这个初始值应该是多少呢?

此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0][2] = 0;

第0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?

第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后在买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。

所以第二次买入操作,初始化为:dp[0][3] = -prices[0];

第二次卖出初始化dp[0][4] = 0;

所以同理可以推出dp[0][j]当j为奇数的时候都初始化为 -prices[0]

4.确定遍历顺序

从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。

5.举例推导dp数组

代码如下:

class Solution {
public:
    int maxProfit(int k, vector& prices) {

        if (prices.size() == 0) return 0;
        vector> dp(prices.size(), vector(2 * k + 1, 0));
        for (int j = 1; j < 2 * k; j += 2) {
            dp[0][j] = -prices[0];
        }
        for (int i = 1;i < prices.size(); i++) {
            for (int j = 0; j < 2 * k - 1; j += 2) {
                dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);
                dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
            }
        }
        return dp[prices.size() - 1][2 * k];
    }
};

不行,快蓝桥杯了呢,再复习几道dfs过过瘾

1.递归实现组合型枚举

#include 

using namespace std;
const int N=30;
int n,k;
vector> result;
vector path;

void dfs(int n,int k,int startIndex)
{
    if(path.size()==k)
    {
        result.push_back(path);
        return;
    }
    for(int i=startIndex;i<=n;i++)
    {
        path.push_back(i);
        dfs(n,k,i+1);
        path.pop_back();
    }
}
int main()
{
    ios_base::sync_with_stdio(0);
    cin.tie(0);
    cout.tie(0);
    cin>>n>>k;
    dfs(n,k,1);
    for(int i=0;i

2.组合总和

//组合总和
#include 

using namespace std;
const int N=30;
int n,k;
vector> result;
vector path;
void dfs(int n,int k,int sum,int startIndex)
{
    if(path.size()==k)
    {
       if(sum==n)
       {
          result.push_back(path);
          return;
       }
    }
    for(int i=startIndex;i<=n;i++)
    {
        sum+=i;
        path.push_back(i);
        dfs(n,k,sum,i+1);
        path.pop_back();
        sum-=i;
    }
}
int main()
{
    ios_base::sync_with_stdio(0);
    cin.tie(0);
    cout.tie(0);
    cin>>k>>n;//n是目标和,k是数字个数呢
    dfs(n,k,0,1);
    for(int i=0;i

 3.电话号码的字母组合 

#include 

using namespace std;
vector result;
string s;
string letterMap[10]={
    " ",
    " ",
    "abc",
    "def",
    "ghi",
    "jkl",
    "mno",
    "pqrs",
    "tuv",
    "wxyz",
};

void dfs(string s1,int index)
{
    if(index==s1.size())
    {
        result.push_back(s);
        return;
    }
    int num=s1[index]-'0';
    string nums=letterMap[num];
    for(int i=0;i>tmp;
    dfs(tmp,0);
    for(int i=0;i

 4.组合总和(不要求不重复,且数组大小也没有要求呢)

代码如下:
注明:

1.最好使用scanf函数

2.当vector大小不固定的时候使用while(scanf(...)!=EOF)的格式读入

3.输出result的形式请注意

#include 

using namespace std;

int k;
vector> result;
vector path;
vector nums;
void dfs(vector& candidates,int target,int sum,int startIndex)
{
    if(sum>target) return;
    if(sum==target)
    {
        result.push_back(path);
        return;
    }
    for(int i=startIndex;i

5.组合总和Ⅱ(本题好好学习)

 

你可能感兴趣的:(算法,动态规划,数据结构)