【学习历程】21 HBase表的热点

1.1 什么是热点

  • 检索habse的记录首先要通过rowkey来定位数据行。
  • 当大量的client访问hbase集群的一个或少数几个节点,造成少数region server的读/写请求过多、负载过大,而其他region server负载却很小,就造成了“热点”现象。

1.2 热点的解决方案

1.2.1 预分区

  • 预分区的目的让表的数据可以均衡的分散在集群中,而不是默认只有一个region分布在集群的一个节点上。

1.2.2 加盐

  • 这里所说的加盐不是密码学中的加盐,而是在rowkey的前面增加随机数,具体就是给rowkey分配一个随机前缀以使得它和之前的rowkey的开头不同

1.2.3 哈希

  • 哈希会使同一行永远用一个前缀加盐。哈希也可以使负载分散到整个集群,但是读却是可以预测的。使用确定的哈希可以让客户端重构完整的rowkey,可以使用get操作准确获取某一个行数据。
rowkey=MD5(username).subString(0,10)+时间戳	

1.2.4 反转

  • 反转固定长度或者数字格式的rowkey。这样可以使得rowkey中经常改变的部分(最没有意义的部分)放在前面。
  • 这样可以有效的随机rowkey,但是牺牲了rowkey的有序性。

你可能感兴趣的:(BigData大数据,hbase)