- 用线性回归找到最佳拟合直线
优点:结果易于理解,计算上不复杂。
缺点:对非线性的数据拟合不好。
适用数据类型:数值型和标称型数据。
回归的目的是预测数值型的目标值。最直接的办法是依据输入写出一个目标值的计算公式 。
- 回归的一般方法
(1) 收集数据:采用任意方法收集数据。
(2) 准备数据:回归需要数值型数据,标称型数据将被转成二值型数据。
(3) 分析数据:绘出数据的可视化二维图将有助于对数据做出理解和分析,在采用缩减法求得新回归系数之后,可以将新拟合线绘在图上作为对比。
(4) 训练算法:找到回归系数。
(5) 测试算法:使用R2或者预测值和数据的拟合度,来分析模型的效果。
(6) 使用算法:使用回归,可以在给定输入的时候预测出一个数值,这是对分类方法的提升,因为这样可以预测连续型数据而不仅仅是离散的类别标签。
- 局部加权线性回归
线性回归的一个问题是有可能出现欠拟合现象,因为它求的是具有最小均方误差的无偏估计。如果模型欠拟合将不能取得最好的预测效果。所以有些方法允许在估计中引入一些偏差,从而降低预测的均方误差。 其中的一个方法是局部加权线性回归。在该算法中,我们给待预测点附近的每个点赋予一定的权重,然后在这个子集上基于最小均方差来进行普通的回归。
- 岭回归
岭回归最先用来处理特征数多于样本数的情况,现在也用于在估计中加入偏差,从而得到更好的估计。这里通过引入λ来限制了所有w之和,通过引入该惩罚项,能够减少不重要的参数,这个技术在统计学中也叫做缩减。 缩减方法可以去掉不重要的参数,因此能更好地理解数据。此外,与简单的线性回归相比,缩减法能取得更好的预测效果。
岭回归使用了单位矩阵乘以常量λ,我们观察其中的单位矩阵I,可以看到值1贯穿整个对角线,其余元素全是0。 形象地, 在0构成的平面上有一条1组成的“岭”,这就是岭回归中的“岭”的由来。
- 前向逐步回归
前向逐步回归算法可以得到与lasso差不多的效果,但更加简单。它属于一种贪心算法,即每一步都尽可能减少误差。一开始,所有的权重都设为1,然后每一步做的决策是对某个权重增加或减少一个很小的值。
伪代码:
数据标准化,使其分布满足0均值和单位方差
在每轮迭代过程中:
设置当前最小误差lowestError为正无穷
对每个特征:
增大或缩小:
改变一个系数得到一个新的W
计算新W下的误差
如果误差Error小于当前最小误差lowestError:设置Wbest等于当前的W
将W设置为新的Wbest
逐步线性回归算法的实际好处并不在于能绘出漂亮的图,主要的优点在于它可以帮助人们理解现有的模型并做出改进。当构建了一个模型后,可以运行该算法找出重要的特征,这样就有可能及时停止对那些不重要特征的收集。最后,如果用于测试,该算法每100次迭代后就可以构建出一个模型,可以使用类似于10折交叉验证的方法比较这些模型,最终选择使误差最小的模型。当应用缩减方法(如逐步线性回归或岭回归)时,模型也就增加了偏差,与此同时却减小了模型的方差。
- 权衡偏差与方差
任何时候,一旦发现模型和测量值之间存在差异,就说出现了误差。当考虑模型中的“噪声”或者说误差时,必须考虑其来源。 缩减法可以将一些系数缩减成很小的值或直接缩减为0,这是一个增大模型偏差的例子。通过把一些特征的回归系数缩减到0,同时也就减少了模型的复杂度。
方差是可以度量的。如果从鲍鱼数据中取一个随机样本集(例如取其中100个数据)并用线性模型拟合,将会得到一组回归系数。同理,再取出另一组随机样本集并拟合,将会得到另一组回归系数。这些系数间的差异大小也就是模型方差大小的反映。
- 示例:预测乐高玩具套装的价格
一种乐高套装基本上在几年后就会停产,但乐高的收藏者之间仍会在停产后彼此交易。Dangler喜欢为乐高套装估价,下面将用本章的回归技术帮助他建立一个预测模型。
(1) 收集数据:用Google Shopping的API收集数据。
(2) 准备数据:从返回的JSON数据中抽取价格。
(3) 分析数据:可视化并观察数据。
(4) 训练算法:构建不同的模型,采用逐步线性回归和直接的线性回归模型。
(5) 测试算法:使用交叉验证来测试不同的模型,分析哪个效果最好。
(6) 使用算法:这次练习的目标就是生成数据模型。
- 本章小结
与分类一样,回归也是预测目标值的过程。回归与分类的不同点在于,前者预测连续型变量,而后者预测离散型变量。回归是统计学中最有力的工具之一。在回归方程里,求得特征对应的最佳回归系数的方法是最小化误差的平方和。
岭回归是缩减法的一种,相当于对回归系数的大小施加了限制。另一种很好的缩减法是Lasso,Lasso难以求解,但可以使用计算简便的逐步线性回归方法来求得近似结果。缩减法还可以看做是对一个模型增加偏差的同时减少方差。偏差方差折中是一个重要的概念,可以帮助我们理解现有模型并做出改进,从而得到更好的模型。