- 决策树算法及其python实例
m0_74831463
算法决策树python
一、决策数的概念什么是决策树算法呢?决策树(DecisionTree)是一种基本的分类与回归方法,本文主要讨论分类决策树。决策树模型呈树形结构,在分类问题中,表示基于特征对数据进行分类的过程。它可以认为是if-then规则的集合。每个内部节点表示在属性上的一个测试,每个分支代表一个测试输出,每个叶节点代表一种类别二、决策树的构造1、决策树的构造步骤输入:训练集D={(21,11),(z2,32),
- LakeHouse湖仓一体成为下一站灯塔,数仓、数据湖架构即将退出群聊
科杰科技
大数据数据仓库
摘要:当前的大数据技术应用趋势表明,客户对单一的数据湖和数仓架构并不满意。近年来几乎所有的数据仓库都增加了对Parquet和ORC格式的外部表支持,这使数仓用户可以从相同的SQL引擎查询数据湖表,但它不会使数据湖表更易于管理,也不会消除仓库中数据的ETL复杂性、陈旧性和高级分析挑战。KeenDataLakeHouse(湖仓一体)作为新一代大数据技术架构,将逐渐取代单一数据湖和数仓架构,成为大数据架
- 论文解读 | 《忍冬桑黄发酵产黄酮类化合物的研究》
桑黄研究员
健康医疗人工智能
出版日期:2022年发表刊物:《中南林业科技大学》论文作者:朱姝枚桑黄(Sanghuangporus)是一种传统的药用真菌,具有显著的免疫增强和抗肿瘤功效。黄酮类化合物作为桑黄中的高含量次生代谢物,主要存在于其菌丝和子实体中,对人体健康具有重要作用。近年来,随着人们对健康的日益关注,利用食用菌作为原料提取黄酮类化合物的研究逐渐成为营养学领域的重要课题。忍冬桑黄(Sanghuangporusloni
- 【小白深度教程 1.32】手把手教你从多视角图像进行 3D 重建(SfM 算法)
小寒学姐学AI
3d算法计算机视觉人工智能深度学习python三维重建
【小白深度教程1.32】手把手教你从多视角图像进行3D重建(SfM算法)1.SfM三维重建算法简介2.SfM方法和原理3.安装依赖库4.构建数据集5.可视化结果6.完整代码1.SfM三维重建算法简介从多张照片中开发三维模型被称为多视图3D重建。数码相机的进步以及图像分辨率和清晰度的提高,使得利用仅有的相机而非昂贵的特殊传感器来重建3D图像成为可能。重建的目标是从一组照片中推导场景的几何结构,假设摄
- 信创国产芯片如何助力企业数字化转型
程序员
企业数字化转型已成为当今时代的关键趋势,在这一进程中,信创国产芯片正发挥着日益重要的作用。随着全球科技竞争的加剧以及对信息安全重视程度的不断提升,信创国产芯片凭借其独特优势,为企业数字化转型提供了坚实的支撑与新的发展机遇。信创国产芯片的发展现状信创产业近年来在我国取得了显著的进步,国产芯片作为其中的核心环节,也迎来了快速发展期。国内众多科研机构和企业加大了在芯片研发领域的投入,不断攻克技术难题。从
- 集睿致远CS5518 Mipi转lvds点屏方案芯片,pin to pin替代国腾GM8775C方案
单片机芯片嵌入式
GM8775C型DSI转双通道LVDS发送器产品主要实现将MIPIDSI转单/双通道LVDS功能,MIPI支持1/2/3/4通道可选,最大支持4Gbps速率。LVDS时钟频率最高154MHz,最大支持视频格式为FULLHD(1920x1200)。产品特征MIPI输入:支持MIPI®D-PHY版本1.00.00和MIPI®DSI版本1.02.00;支持1~4个数据通道,1个时钟通道;支持ULPS(超
- SpringBoot整合Swagger和Mybatis-Plus
_拾柒_
springbootmybatis
一、Swagger(一)、Swagger简介Swagger是一种用于描述、设计、构建和使用RESTful风格的Web服务的工具集和规范。它提供了一种标准的方式来定义API,并生成交互式文档,使得开发人员、测试人员和其他利益相关者可以快速了解和使用API。(二)、Swagger特点自动生成文档:基于API定义,Swagger可以自动生成交互式文档,其中包含了API的详细说明、请求示例、响应示例等信息
- SQL中where与having的区别
WD技术
#mysql面试sql数据库database
1.where和having的区别2.聚合函数和groupby3.where和having的执行顺序4.where不能使用聚合函数、having中可以使用聚合函数1.where和having的区别where:where是一个约束声明,使用where来约束来自数据库的数据;where是在结果返回之前起作用的;where中不能使用聚合函数。having:having是一个过滤声明;在查询返回结果集以后
- Spring Cloud:微服务架构的利器
Earth explosion
架构springcloud微服务
在当今快速变化的软件开发领域,微服务架构凭借其灵活性、可扩展性和易于维护的特点,成为了众多企业构建大型应用系统的首选方案。而SpringCloud,作为Spring生态系统中的一部分,为开发者提供了一整套用于构建微服务架构的工具集,极大地简化了微服务应用的开发、部署和管理过程。本文将深入介绍SpringCloud的核心概念、关键技术及其在实际项目中的应用。一、SpringCloud简介Spring
- 常见经典目标检测算法
109702008
人工智能#深度学习目标检测人工智能
ChatGPT目标检测(ObjectDetection)是计算机视觉领域的一个重要分支,其目的是识别数字图像中的不同对象,并给出它们的位置和类别。近年来,许多经典的目标检测算法被提出并广泛应用。以下是一些常见的经典目标检测算法:1.R-CNN(RegionswithCNNfeatures):R-CNN通过使用区域提议方法(如选择性搜索)首先生成潜在的边界框,然后使用卷积神经网络(CNN)提取特征,
- GraphCube、Spark和深度学习技术赋能快消行业关键运营环节
weixin_30777913
开发语言大数据深度学习人工智能spark
在快消品(FMCG)行业,需求计划(DemandPlanning)、库存管理(InventoryManagement)和需求供应管理(DemandSupplyManagement)是影响企业整体效率和利润水平的关键运营环节。GraphCube图多维数据集技术、Spark大数据分析处理技术和深度学习技术的结合,为这些环节提供了智能化、动态化和实时化的解决方案,显著提升业务运营效率和企业利润。一、技术
- 一、大语言模型微调 vs. 大语言模型应用
AI Echoes
深度学习人工智能deepseek机器学习算法
一、大语言模型微调vs.大语言模型应用1.微调(Fine-Tuning)的含义与特点定义与作用微调指在预训练好(通用)的基础模型上,通过在特定领域或任务的数据集上进一步训练来调整模型参数,使其在该领域任务中获得更优表现。这种方法可以使通用模型“定制化”,更好地理解专业术语和领域知识,从而提升准确性和响应质量。例如,为医疗、法律、金融等垂直领域构建专属模型,往往需要在预训练模型基础上进行微调。特点参
- HarmonyOS实战开发-如何打造购物商城APP。
码牛程序猿
鸿蒙工程师HarmonyOS鸿蒙harmonyosOpenHarmony鸿蒙鸿蒙应用开发华为鸿蒙开发HarmonyOS
今天给大家分享一个非常好的实战项目,购物商城,购物商城是一个集购物、娱乐、服务于一体的综合性平台,致力于为消费者提供一站式的购物体验。各种功能都有涉及,最适合实现学习。做好商城项目,肯定会把开发中遇到的百分之60的技术得到实战的经验。下面介绍一下商城的主要模块:首页1,搜索框,点击进入搜索页面2,顶部分类,通过不同分类查询对应信息3,广告轮播,自动切换图片,可以进行点击进入4,商品列表,展示每个项
- MyBatis 中 resultType 的使用详解
旧故新长
windows
MyBatis中resultType的使用详解1.resultType的含义在MyBatis中,resultType指的是每一行查询结果的Java类型,而不是整个结果集的类型。常见的用法:resultType="java.lang.String":表示每一行是一个字符串。resultType="com.example.User":表示每一行是一个User对象。2.resultType与方法返回值类
- 深陷“大数据杀熟”漩涡的飞猪,庄卓然如何力挽狂澜?
财经三剑客
大数据
在线旅游市场(OTA)的蓬勃发展为消费者带来了诸多便利,然而,在这股数字化浪潮中,飞猪旅行却因其频繁陷入“大数据杀熟”的争议而备受瞩目。这一行为不仅损害了消费者的合法权益,更让飞猪的品牌形象蒙上了一层阴影。近年来,飞猪平台上关于价格乱象的投诉屡禁不止。在黑猫投诉平台上,与“飞猪”相关的投诉累计已超9万条,其中直接以“飞猪杀熟”为关键词的投诉便达数百条。消费者们纷纷反映,在飞猪平台上预订机票、酒店等
- 如何用大模型评估大模型——PAI-Judge裁判员大语言模型的实现简介
人工智能机器学习大模型llm
背景:为什么需要一个「裁判员大语言模型」?随着大模型(LLM)技术的爆发式应用,如何快速、客观评估模型回复质量成为行业痛点。对于回答客观问题的LLM,目前业内已经有比较成熟的数据集进行效果评测与模型打榜。但是如何对一个开放式生成LLM进行效果评估,尤其在知识问答、客服对话、内容合规、RAG(检索增强生成)等场景中,目前主流的评测方式仍存在一定的局限性:人工标注:成本高昂、效率低下;传统的自动化评估
- 纷享销客CRM全面评测:纷享销客和销售易差异化对比
saas
企业数字化转型热潮中,CRM是众多企业迈向数字化管理的里程碑。近年来,国产CRM在政策推动下成为大中型企业的首选,也有很多企业选择国产CRM替代国外供应商。国产CRM第一梯队中,纷享销客以其卓越的表现脱颖而出,稳坐头把交椅。IDC发布了最新数据报告《IDCChinaSemiannualCRMSaaSTracker2024H1》,报告显示,纷享销客以25.18%的市场增速遥遥领先于其他国内外CRM厂
- “四预”驱动数字孪生水利:让智慧治水守护山河安澜
GeoSaaS
实景三维智慧城市人工智能gis大数据安全
近年来,从黄河秋汛到海河特大洪水,从珠江流域性洪灾到长江罕见骤旱,极端天气频发让水安全问题备受关注。如何实现“治水于未发”?数字孪生水利以“预报、预警、预演、预案”(四预)为核心,正在掀起一场水利治理的智慧革命。一、数字孪生水利:从物理世界到虚拟镜像的跃迁数字孪生水利并非简单的“数字建模”,而是通过高精度传感器、大数据、人工智能等技术,在虚拟空间构建与物理流域完全映射的“数字分身”,实现水情、工情
- 【Linux】Linux下调试器gdb的使用
安 度 因
Linuxlinux运维服务器测试工具调试
作者主页:@安度因学习社区:StackFrame专栏链接:Linux文章目录一、前言二、铺垫三、指令集和使用1、指令集2、演示四、结语如果无聊的话,就来逛逛我的博客栈吧!一、前言前几篇Linux博客中,我们分别学习了与编辑、编译、自动化构建代码、上传代码的工具。而今天,我们将学习最后一个工具——Linux下的调试器gdb
- 什么是MCP?看不懂你打我
X.Cristiano
深度学习MCP
什么是MCP?MCP是一种协议,它实现了大模型资源调用的标准化。千百年来,随着人类社会的发展,标准化的进程不断推进。大模型与外部资源的对接同样需要标准化,MCP正是为此而生!接下来的文字,或许,将帮助你奶奶明白MCP对于她意味着什么。2011年,微信发布。想象一下,你奶奶刚开始用微信。那时,还没有小程序。她的体验或许是这样的:第一个月,她惊喜地发现微信能订电影票了!再过一个月,她发现微信又能约出租
- 机器学习课堂4线性回归模型+特征缩放
木尘152132
机器学习线性回归python
一、实验2-2,线性回归模型,计算模型在训练数据集和测试数据集上的均方根误差代码:#2-2线性回归模型importpandasaspdimportnumpyasnpimportmatplotlib.pyplotasplt#参数设置iterations=3000#迭代次数learning_rate=0.0001#学习率m_train=3000#训练样本的数量flag_plot_lines=False
- 深入理解正则表达式:语法全解析
谢兴豪
本文还有配套的精品资源,点击获取简介:正则表达式是一种用于文本匹配的模式,广泛应用在文本处理、数据验证等领域。本文将全面探讨正则表达式的语法细节,包括字符匹配、元字符、字符类、量词、分组与反向引用、选择与否定、位置锚点、预定义字符集、模式修饰符、回溯控制以及正向先行断言和正向后行断言。掌握这些知识有助于提高编程效率和代码质量。1.正则表达式简介正则表达式是IT行业中的“瑞士军刀”,它们在文本处理、
- Transformer与图神经网络的融合与应用
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Transformer与图神经网络的融合与应用关键词:Transformer,图神经网络,注意力机制,图结构数据,图表示学习,图分类,图生成1.背景介绍近年来,深度学习技术在各个领域取得了显著的进展。其中,Transformer模型和图神经网络(GraphNeuralNetworks,GNNs)是两个备受关注的研究方向。Transformer最初应用于自然语言处理领域,通过自注意力机制实现了并行计
- PTA基础编程集7-20 打印九九口诀表 (15分)
ohhTechSoon
PTA基础编程集
7-20打印九九口诀表(15分)下面是一个完整的下三角九九口诀表:11=112=222=413=323=633=914=424=834=1244=1615=525=1035=1545=2055=2516=626=1236=1846=2456=3066=3617=727=1437=2147=2857=3567=4277=4918=828=1638=2448=3258=4068=4878=5688=6
- FDTD:基于Python的电磁场模拟开源库教程
邱进斌Olivia
FDTD:基于Python的电磁场模拟开源库教程项目地址:https://gitcode.com/gh_mirrors/fd/fdtd项目介绍FDTD(Finite-DifferenceTime-Domain)是一个致力于电磁场仿真的开源项目,由flaport维护。此项目基于Python语言,提供了一套灵活且强大的工具集,用于解决各种电磁学问题,包括但不限于光学、射频以及微波工程中的传播、散射等问
- 大模型微调
归一码字
人工智能
文章目录前言一、使用的库二、数据预处理1.引入库2.读入数据3.对数据进行预处理4.转换为json格式文件三,使用算子分析数据并进行数据处理四,划分训练集和测试集五,编写训练脚本开始训练六,进行模型推理人工评估总结前言这是使用知乎评论进行模型微调,让模型输出更加通畅接近人的使用语言一、使用的库modelscope:提供模型、数据集下载能力data-juicer:提供数据集处理能力ms-swift:
- 部分标签数据集生成与过滤特定标签方法
阳光明媚大男孩
机器学习人工智能
完整代码总结这段代码的目的是通过构建一个部分标签学习(PartialLabelLearning,PLL)框架来生成一个包含部分标签的数据集,并且支持根据给定的标签列表对数据集进行筛选和过滤。代码包含了多个类和函数,主要分为以下几部分:数据预处理与加载:使用PyTorch和torchvision来加载CIFAR-10数据集,并对其进行标准化处理。部分标签数据集的生成:为每个样本生成多个候选标签,并模
- 查看 CUDA cudnn 版本 查看Navicat GPU版本
FergusJ
备份python开发语言
查看显卡型号:lspci|grepVGA(lspci是linux查看硬件信息的命令),屏幕会打印出主机的集显几独显信息python中查看显卡型号fromtensorflow.python.clientimportdevice_libdevice_lib.list_local_devices()
- 深入解析 .NET 中的依赖项加载机制:原理、实现与最佳实践
江沉晚呤时
Netcore前端数据库c#.netcore
在现代应用程序的开发中,依赖项管理与加载是非常重要的组成部分,尤其是在大型系统中,如何高效地加载和管理依赖项可以极大地影响应用程序的性能、可维护性和扩展性。在.NET中,依赖项加载不仅涉及静态依赖的管理,还包括动态加载组件和程序集的能力。本文将详细讲解.NET中的依赖项加载机制,覆盖从静态依赖注入到动态加载的所有重要概念。1.依赖项加载的基本概念1.1依赖项与依赖注入(DI)依赖项是一个对象在其生
- 暗光增强技术研究进展与产品落地综合分析(2023-2025)
AndrewHZ
深度学习新浪潮图像处理算法动态范围计算机视觉深度学习transformer暗光增强
一、引言暗光增强技术作为计算机视觉与移动影像领域的核心研究方向之一,近年来在算法创新、硬件适配及产品落地方面取得了显著进展。本文从技术研究与产业应用两个维度,系统梳理近三年(2023-2025)该领域的关键突破,并对比分析主流手机厂商的影像技术优劣势。二、暗光增强技术研究进展1.算法创新:从传统模型到深度学习(1)Retinex理论的深度结合清华与ETH联合提出的Retinexformer(202
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$