sklearn中预测模型的score函数

sklearn.linear_model.LinearRegression.score
方法:
score(self, X, y, sample_weight=None)

官方描述:Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) ** 2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

作用:返回该次预测的系数R2

其中R2 =(1-u/v)。

u=((y_true - y_pred) ** 2).sum() v=((y_true - y_true.mean()) ** 2).sum()

结果:最好的分数是1,可能是负值(因为模型可能会变得更加糟糕)1 是过拟合吧
当一个模型不论输入何种特征值,其总是输出期望的y的时候,此时返回0。
注意使用测试集即可

你可能感兴趣的:(机器学习)