LeNet由来及意义

一、LeNet简介

LeNet由来及意义_第1张图片
LeNet-5是Yann LeCun等人在多次研究后提出的最终卷积神经网络结构,一般LeNet即指代LeNet-5。

LeNet-5包含七层,不包括输入,每一层都包含可训练参数(权重),当时使用的输入数据是32*32像素的图像。下面逐层介绍LeNet-5的结构,并且,卷积层将用Cx表示,子采样层则被标记为Sx,完全连接层被标记为Fx,其中x是层索引。

层C1是具有六个55的卷积核的卷积层(convolution),特征映射的大小为2828,这样可以防止输入图像的信息掉出卷积核边界。C1包含156个可训练参数和122304个连接。

层S2是输出6个大小为1414的特征图的子采样层(subsampling/pooling)。每个特征地图中的每个单元连接到C1中的对应特征地图中的22个邻域。S2中单位的四个输入相加,然后乘以可训练系数(权重),然后加到可训练偏差(bias)。结果通过S形函数传递。由于2*2个感受域不重叠,因此S2中的特征图只有C1中的特征图的一半行数和列数。S2层有12个可训练参数和5880个连接。

层C3是具有16个5-5的卷积核的卷积层。前六个C3特征图的输入是S2中的三个特征图的每个连续子集,接下来的六个特征图的输入则来自四个连续子集的输入,接下来的三个特征图的输入来自不连续的四个子集。最后,最后一个特征图的输入来自S2所有特征图。C3层有1516个可训练参数和156 000个连接。

层S4是与S2类似,大小为22,输出为16个55的特征图。S4层有32个可训练参数和2000个连接。

层C5是具有120个大小为55的卷积核的卷积层。每个单元连接到S4的所有16个特征图上的55邻域。这里,因为S4的特征图大小也是55,所以C5的输出大小是11。因此S4和C5之间是完全连接的。C5被标记为卷积层,而不是完全连接的层,是因为如果LeNet-5输入变得更大而其结构保持不变,则其输出大小会大于1*1,即不是完全连接的层了。C5层有48120个可训练连接。

F6层完全连接到C5,输出84张特征图。它有10164个可训练参数。这里84与输出层的设计有关。

二、发展历史

LeNet5诞生于1994年,是最早的卷积神经网络之一,并且推动了深度学习领域的发展。自从1988年开始,在多年的研究和许多次成功的迭代后,这项由Yann LeCun完成的开拓性成果被命名为LeNet5。

1989年,Yann LeCun等人在贝尔实验室的研究首次将反向传播算法进行了实际应用,并且认为学习网络泛化的能力可以通过提供来自任务域的约束来大大增强。他将使用反向传播算法训练的卷积神经网络结合到读取“手写”数字上,并成功应用于识别美国邮政服务提供的手写邮政编码数字。这即是后来被称为LeNet的卷积神经网络的雏形。同年,Yann LeCun在发表的另一篇论文中描述了一个小的手写数字识别问题,并且表明即使该问题是线性可分的,单层网络也表现出较差的泛化能力。而当在多层的、有约束的网络上使用有位移不变性的特征检测器(shift invariant feature detectors)时,该模型可以在此任务上表现得非常好。他认为这些结果证明了将神经网络中的自由参数数量最小化可以增强神经网络的泛化能力。

1990年他们发表的论文再次描述了反向传播网络在手写数字识别中的应用,他们仅对数据进行了最小限度的预处理,而模型则是针对这项任务精心设计的,并且对其进行了高度约束。输入数据由图像组成,每张图像上包含一个数字,在美国邮政服务提供的邮政编码数字数据上的测试结果显示该模型的错误率仅有1%,拒绝率约为9%。

其后8年他们的研究一直继续,直到1998年,Yann LeCun,Leon Bottou,Yoshua Bengio和Patrick Haffner在发表的论文中回顾了应用于手写字符识别的各种方法,并用标准手写数字识别基准任务对这些模型进行了比较,结果显示卷积神经网络的表现超过了其他所有模型。他们同时还提供了许多神经网络实际应用的例子,如两种用于在线识别手写字符的系统和能每天读取数百万张支票的模型。

他们的研究取得了巨大的成功,并且激起了大量学者对神经网络的研究的兴趣。在今天向过去回首,目前性能最好的神经网络的架构已与LeNet不尽相同,但这个网络是大量神经网络架构的起点,并且也给这个领域带来了许多灵感。

三、发展分析

LeNet的设计较为简单,因此其处理复杂数据的能力有限;此外,在近年来的研究中许多学者已经发现全连接层的计算代价过大,而使用全部由卷积层组成的神经网络。
现在在研究中已经很少将LeNet使用在实际应用上,对卷积神经网络的设计往往在某个或多个方向上进行优化,如包含更少的参数(以减轻计算代价)、更快的训练速度、更少的训练数据要求等。

你可能感兴趣的:(深度学习,人工智能,深度学习,LeNet)