随想录Day52--动态规划: 300.最长递增子序列 , 674. 最长连续递增序列 ,718. 最长重复子数组

300. 最长递增子序列

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

 

示例 1:

输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。

示例 2:

输入:nums = [0,1,0,3,2,3]
输出:4

示例 3:

输入:nums = [7,7,7,7,7,7,7]
输出:1

提示:

  • 1 <= nums.length <= 2500
  • -104 <= nums[i] <= 104

进阶:

  • 你能将算法的时间复杂度降低到 O(n log(n)) 吗?

思路

首先通过本题大家要明确什么是子序列,“子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序”。

本题也是代码随想录中子序列问题的第一题,如果没接触过这种题目的话,本题还是很难的,甚至想暴力去搜索也不知道怎么搜。 子序列问题是动态规划解决的经典问题,当前下标i的递增子序列长度,其实和i之前的下表j的子序列长度有关系,那又是什么样的关系呢。

接下来,我们依然用动规五部曲来详细分析一波:

1.dp[i]的定义

本题中,正确定义dp数组的含义十分重要。

dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度

为什么一定表示 “以nums[i]结尾的最长递增子序” ,因为我们在 做 递增比较的时候,如果比较 nums[j] 和 nums[i] 的大小,那么两个递增子序列一定分别以nums[j]为结尾 和 nums[i]为结尾, 要不然这个比较就没有意义了,不是尾部元素的比较那么 如何算递增呢。

2.状态转移方程

位置i的最长升序子序列等于j从0到i-1各个位置的最长升序子序列 + 1 的最大值。

所以:if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);

注意这里不是要dp[i] 与 dp[j] + 1进行比较,而是我们要取dp[j] + 1的最大值

3.dp[i]的初始化

每一个i,对应的dp[i](即最长递增子序列)起始大小至少都是1.

4.确定遍历顺序

dp[i] 是有0到i-1各个位置的最长递增子序列 推导而来,那么遍历i一定是从前向后遍历。

j其实就是遍历0到i-1,那么是从前到后,还是从后到前遍历都无所谓,只要吧 0 到 i-1 的元素都遍历了就行了。 所以默认习惯 从前向后遍历。

遍历i的循环在外层,遍历j则在内层,代码如下:

for (int i = 1; i < nums.size(); i++) {
    for (int j = 0; j < i; j++) {
        if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);
    }
    if (dp[i] > result) result = dp[i]; // 取长的子序列
}

5.举例推导dp数组

输入:[0,1,0,3,2],dp数组的变化如下:

随想录Day52--动态规划: 300.最长递增子序列 , 674. 最长连续递增序列 ,718. 最长重复子数组_第1张图片

class Solution {
    public int lengthOfLIS(int[] nums) {
        int [] dp = new int[nums.length];
        for(int i = 0; i < dp.length; i++){
            dp[i] = 1;
        }
        int result = 1;
        for(int i = 1; i < nums.length; i++){
            for(int j = 0; j < i; j++){
                if(nums[j] < nums[i]){
                    dp[i] = Math.max(dp[i], dp[j] + 1);
                }
            }
            result = Math.max(result, dp[i]);
        }
        return result;
    }
}

 674. 最长连续递增序列

给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。

连续递增的子序列 可以由两个下标 l 和 rl < r)确定,如果对于每个 l <= i < r,都有 nums[i] < nums[i + 1] ,那么子序列 [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]] 就是连续递增子序列。

示例 1:

输入:nums = [1,3,5,4,7]
输出:3
解释:最长连续递增序列是 [1,3,5], 长度为3。
尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为 5 和 7 在原数组里被 4 隔开。 

示例 2:

输入:nums = [2,2,2,2,2]
输出:1
解释:最长连续递增序列是 [2], 长度为1。

提示:

  • 1 <= nums.length <= 104
  • -109 <= nums[i] <= 109
class Solution {
    public int findLengthOfLCIS(int[] nums) {
        int[] dp = new int[nums.length];
        for(int i = 0; i < nums.length; i++){
            dp[i] = 1;
        }
        int result = 1;
        for(int i = 1; i < nums.length; i++){
            if(nums[i] > nums[i - 1]){
                dp[i] = dp[i - 1] + 1;
            }
            result = Math.max(result, dp[i]);
        }
        return result;
    }
}

718. 最长重复子数组

给两个整数数组 nums1 和 nums2 ,返回 两个数组中 公共的 、长度最长的子数组的长度 

示例 1:

输入:nums1 = [1,2,3,2,1], nums2 = [3,2,1,4,7]
输出:3
解释:长度最长的公共子数组是 [3,2,1] 。

示例 2:

输入:nums1 = [0,0,0,0,0], nums2 = [0,0,0,0,0]
输出:5

提示:

  • 1 <= nums1.length, nums2.length <= 1000
  • 0 <= nums1[i], nums2[i] <= 100

思路

注意题目中说的子数组,其实就是连续子序列。

要求两个数组中最长重复子数组,如果是暴力的解法 只需要先两层for循环确定两个数组起始位置,然后再来一个循环可以是for或者while,来从两个起始位置开始比较,取得重复子数组的长度。

本题其实是动规解决的经典题目,我们只要想到 用二维数组可以记录两个字符串的所有比较情况,这样就比较好推 递推公式了。 动规五部曲分析如下:

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j] :以下标i - 1为结尾的A,和以下标j - 1为结尾的B,最长重复子数组长度为dp[i][j]。 (特别注意: “以下标i - 1为结尾的A” 标明一定是 以A[i-1]为结尾的字符串 )

此时细心的同学应该发现,那dp[0][0]是什么含义呢?总不能是以下标-1为结尾的A数组吧。

其实dp[i][j]的定义也就决定着,我们在遍历dp[i][j]的时候i 和 j都要从1开始。

那有同学问了,我就定义dp[i][j]为 以下标i为结尾的A,和以下标j 为结尾的B,最长重复子数组长度。不行么?

行倒是行! 但实现起来就麻烦一点,需要单独处理初始化部分,在本题解下面的拓展内容里,我给出了 第二种 dp数组的定义方式所对应的代码和讲解,大家比较一下就了解了。

  1. 确定递推公式

根据dp[i][j]的定义,dp[i][j]的状态只能由dp[i - 1][j - 1]推导出来。

即当A[i - 1] 和B[j - 1]相等的时候,dp[i][j] = dp[i - 1][j - 1] + 1;

根据递推公式可以看出,遍历i 和 j 要从1开始!

  1. dp数组如何初始化

根据dp[i][j]的定义,dp[i][0] 和dp[0][j]其实都是没有意义的!

但dp[i][0] 和dp[0][j]要初始值,因为 为了方便递归公式dp[i][j] = dp[i - 1][j - 1] + 1;

所以dp[i][0] 和dp[0][j]初始化为0。

举个例子A[0]如果和B[0]相同的话,dp[1][1] = dp[0][0] + 1,只有dp[0][0]初始为0,正好符合递推公式逐步累加起来。

  1. 确定遍历顺序

外层for循环遍历A,内层for循环遍历B。

那又有同学问了,外层for循环遍历B,内层for循环遍历A。不行么?

也行,一样的,我这里就用外层for循环遍历A,内层for循环遍历B了。

同时题目要求长度最长的子数组的长度。所以在遍历的时候顺便把dp[i][j]的最大值记录下来。

代码如下:

for (int i = 1; i <= nums1.size(); i++) {
    for (int j = 1; j <= nums2.size(); j++) {
        if (nums1[i - 1] == nums2[j - 1]) {
            dp[i][j] = dp[i - 1][j - 1] + 1;
        }
        if (dp[i][j] > result) result = dp[i][j];
    }
}

  1. 举例推导dp数组

拿示例1中,A: [1,2,3,2,1],B: [3,2,1,4,7]为例,画一个dp数组的状态变化,如下:

随想录Day52--动态规划: 300.最长递增子序列 , 674. 最长连续递增序列 ,718. 最长重复子数组_第2张图片

class Solution {
    public int findLength(int[] nums1, int[] nums2) {
        int result = 0;
        int[][] dp = new int[nums1.length + 1][nums2.length + 1];
        
        for (int i = 1; i < nums1.length + 1; i++) {
            for (int j = 1; j < nums2.length + 1; j++) {
                if (nums1[i - 1] == nums2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                    result = Math.max(result, dp[i][j]);
                }
            }
        }
        
        return result;
    }
}

你可能感兴趣的:(动态规划,算法)