- tensorflow学习笔记(二):机器学习必备API
我愛大泡泡
深度学习机器学习深度学习
前一节介绍了一些最基本的概念和使用方法。因为我个人的最终目的还是在深度学习上,所以一些深度学习和机器学习模块是必须要了解的,这其中包括了tf.train、tf.contrib.learn、还有如训练神经网络必备的tf.nn等API。这里准备把常用的API和使用方法按照使用频次进行一个排列,可以当做一个以后使用参考。这一节介绍的内容可以有选择的看。而且最全的信息都在TensorFlow的API里面了
- TensorFlow学习笔记
SIENTIST
使用“图”(graph)表示计算任务;在被称为“会话”(session)的“上下文”(context)中执行图;使用“张量”(tensor)表示数据,tensor可以任务是一个n维的数组或列表;通过“变量”(varible)维护状态;使用feed和fetch可以为任意的操作赋值或从中获取数据tensorflow.jpggraph中的节点称为op(operation),每个op能把输入的tensor
- tensorflow学习笔记-图像分类模型-AlexNet实现
飞天小小猫
之前一篇文章中总结了CNN中图像分类的经典模型,包括论文解读和分析,但是不写个代码搞一把总觉得虚~啊哈哈这个系列里准备把这些个经典模型用tensorflow实现一下。参考之前引用的blog:深度学习AlexNet模型详细分析上代码吧。参照着模型看更好读一些。'''图像分类模型的tensorflow实现之--AlexNetTensorflowVersion:1.4PythonVersion:3.6R
- Tensorflow学习笔记(六)——卷积神经网络
七月七叶
实现对fashion-minist分类: (1)引包importosos.environ["CUDA_VISIBLE_DEVICES"]="-1"importmatplotlibasmplimportmatplotlib.pyplotasplt%matplotlibinlineimportnumpyasnpimportpandasaspdimportsklearnimportsysimpor
- tensorflow vgg基于cifar-10进行训练
GOGOYAO
最近接触tf,想在cifar-10数据集上训练下vgg网络。最开始想先跑vgg16,搜了一大圈,没有一个可以直接跑的(我参考【深度学习系列】用PaddlePaddle和Tensorflow实现经典CNN网络Vgg跑出来的精度就10%),要么是代码是针对1000种分类的,要么是预训练好的。最后在Tensorflow学习笔记:CNN篇(6)——CIFAR-10数据集VGG19实现找到了一个vgg19的
- 深度学习与Tensorflow学习笔记2 ——回调函数callbacks和Tensorboard
木头里有虫911
上一期我们从Fashion-mnist数据集开始,使用Tensorflow.keras搭建一个简单的神经网络来处理分类问题。通过这个简单例子我们熟悉了tf.keras的调用。本期我们来学习keras下面的回调函数callbacks的用法。这里,简单的再说一句,Tensorflow有非常完善的官方文档,相当于学习手册。(而且还有中文网站:https://tensorflow.google.cn/)在
- TensorFlow学习笔记--(4)神经网络模型-数据集预处理
Postlude
TensorFlowtensorflow学习笔记
神经网络初步以scikit-leran鸢尾花为例通过scikit-learn库自带的鸢尾花数据集来测试数据的读入fromsklearnimportdatasetsfrompandasimportDataFrameimportpandasaspdx_data=datasets.load_iris().data#.data返回iris数据集所有输入特征y_data=datasets.load_iris
- tensorflow学习笔记:识别图中模糊的手写体数字(2)基于多层神经网络以及TensorBoard可视化网络
heart_ace
tensorflow学习笔记tensorflow神经网络可视化python深度学习
tensorflow学习笔记:识别图中模糊的手写体数字(2)基于多层神经网络以及TensorBoard可视化运行环境tensorflow-gpu1.11.0python3.6.9importtensorflowastfimportos读取MINIST数据集fromtensorflow.examples.tutorials.mnistimportinput_datamnist=input_data.
- tensorflow学习笔记(十):GAN生成手写体数字(MNIST)
陈小虾
深度学习框架实战GAN手写体生成GAN实战
文章目录一、GAN原理二、项目实战2.1项目背景2.2网络描述2.3项目实战一、GAN原理生成对抗网络简称GAN,是由两个网络组成的,一个生成器网络和一个判别器网络。这两个网络可以是神经网络(从卷积神经网络、循环神经网络到自编码器)。生成器从给定噪声中(一般是指均匀分布或者正态分布)产生合成数据,判别器分辨生成器的的输出和真实数据。前者试图产生更接近真实的数据,相应地,后者试图更完美地分辨真实数据
- tensorflow学习笔记3
抬头挺胸才算活着
CreateaTensorFlowobjectthatreturnsx+yifx>y,andx-yotherwise.tf.cond相当于其他编程语言的?,比较要用tf.greatertf.cond(tf.greater(x,y),lambda:tf.add(x,y),lambda:tf.subtract(x,y))tf.case第一个参数是字典或者tuples都可以,只要是一对对,然后每一对第一
- 8月10日TensorFlow学习笔记——TensorFlow 数据类型、创建、索引与切片、维度变换、前向传播
Ashen_0nee
tensorflow学习python
文章目录前言一、Numpy回归问题实战1、Step1:computeloss2、Step2:computeGradientandupdate二、手写数字识别1、Step1:XandY2、Step2:networkstructure3、Step3:循环计算Loss、梯度并更新参数三、数据类型1、tf.constant()2、TensorProperty(1)、.device(2)、.numpy()(
- TensorFlow学习笔记--(3)张量的常用运算函数
Postlude
TensorFlowtensorflow学习笔记
损失函数及求偏导通过tf.GradientTape函数来指定损失函数的变量以及表达式最后通过gradient(%损失函数%,%偏导对象%)来获取求偏导的结果独热编码给出一组特征值来对图像进行分类可以用独热编码0的概率是第0种1的概率是第1种0的概率是第二种tf.one_hot(%某标签值%,%分类数%)这里还没太看懂结果的3X3矩阵是怎么来的如果单纯的是因为有几种类型就有几个1那传入的标签值参数就
- tensorflow学习笔记--张量和基本运算
Yohance0_0
tensorflow框架学习深度学习
张量张量的阶和数据类型(1)张量的属性:graph:张量所属的默认图op:张量的操作名name:张量的字符串描述shape:张量形状一维{5}二维{2,3}三维{2,3,4}importtensorflowastfimportosos.environ['TF_CPP_MIN_LOG_LEVEL']='2'a=tf.constant(5.0)graph=tf.get_default_graph()p
- tensorflow学习笔记----2.常用函数1
qq_35821503
tensorflow深度学习
1.强制tensor转换为该数据类型tf.cast(张量名,dtype=数据类型)x1=tf.constant([1,2,3],dtype=tf.float64)print(x1)x2=tf.cast(x1,dtype=tf.int32)print("x2=",x2)运行结果:2.计算张量维度上元素的最小值tf.reduce_min(张量名)print("min=",tf.reduce_min(x
- TensorFlow学习笔记----3.常用函数2
qq_35821503
tensorflow深度学习
一.Gradienttape我们可以在with结构中,使用Gradienttape实现某个函数对指定参数的求导运算配合上一个文件讲的variable函数可以实现损失函数loss对参数w的求导计算with结构记录计算过程,gradient求出张量的梯度withtf.GradientTape()astape:若干个计算过程grad=tape.gradient(函数,对谁求导)withtf.Gradie
- TensorFlow学习笔记--MLP多层感知机识别手写数字1-9
北航_Curry
TensorFlow2.0tensorflow神经网络深度学习1024程序员节
#简单粗暴tensorflow2.0合集视频p7-p9多层感知机(MLP)利用多层感知机MLP实现手写数字0-9的mnist数据集的识别importtensorflowastfimportnumpyasnp#数据的获取和预处理classMNISTLoader():def__init__(self):mnist=tf.keras.datasets.mnist(self.train_data,self
- Tensorflow学习笔记--张量与会话
IT修炼家
tensorflow
张量张量是Tensorflow的核心组件之一,可以理解为Tensorflow就是张量和流组成的,张量可以简单地理解为多维数组,我的理解就是张量是一个数据模板,深度学习所有数据首先转换为张量的格式再进行计算,然后得到学习结果。横向看张量是整形、浮点型的数,另外注意张量计算中,有些计算需要张量数据的类型相同,否则会报错。纵向看张量是不同维度的“数组”,零阶张量是一个数,是计算的最小单元;二阶张量是向量
- tensorflow学习笔记--Variable变量
爱吃小白兔的大萝卜
tensorflow学习python
tf.Variable()变量:创建、初始化、保存、加载。1.创建Variable()构造函数需要变量的初始值,即任何形状和类型的张量Tensor。初始值定义其形状和类型,一旦构建,变量的类型和形状即确定。如果想要稍后改变变量的形状,需要带上validate_shape=False的赋值操作。#创建一个变量w=tf.Variable(tensor,name=)#运算y=tf.matmul(w,其他
- tensorflow学习笔记:张量介绍以及张量操作函数
heart_ace
tensorflow学习笔记深度学习tensorflow张量
张量(tensor)tensorflow程序使用tensor数据结构来代表所有的数据,计算图中,操作间传递的数据都是tensor。tensor堪为一个n维的数组或列表,每个tensor中包含类型(type)、阶(rank)和形状(shape)。tensor类型tensor类型python类型描述DF_FLOATtf.float3232位浮点数DF_DOUBLEtf.float6461为浮点数DF_
- [TensorFlow 学习笔记-03]TensorFlow简介
caicaiatnbu
TensorFlow学习笔记深度学习TensorFlow
[版权说明]TensorFlow学习笔记参考:李嘉璇著TensorFlow技术解析与实战黄文坚唐源著TensorFlow实战郑泽宇顾思宇著TensorFlow实战Google深度学习框架乐毅王斌著深度学习-Caffe之经典模型详解与实战TensorFlow中文社区http://www.tensorfly.cn/极客学院著TensorFlow官方文档中文版TensorFlow官方文档英文版以及各位大
- TensorFlow学习笔记--(2)张量的常用运算函数
Postlude
TensorFlowtensorflow学习笔记
张量的取值函数求张量的平均值:tf.reduce.mean(%张量名%)求张量的最小值:tf.reduce_min(%张量名%)求张量的最大值:tf.reduce_max(%张量名%)求张量的和:tf.reduce_sum(%张量名%)其次,对于上述所有操作都可在函数后添加一个新的参数axis=%维度%axis=0代表第一维度axis=1代表第二维度以此类推张量的四则运算加减乘除次方/开方特别注意
- Tensorflow学习笔记:1-tensorflow-gpu部署 & keras简单使用-2023-2-12
Merlin雷
python机器学习笔记tensorflowkeras
tensorflow-gpu学习笔记:部署&keras简单使用-2023-2-12tensorflow2.6.0GPU版本部署及测试0-查看NVIDIA驱动版本1-安装2-测试3-简单使用4-tf.keras概述1、(单层)线性回归1、导包&数据读取和观察2、预测目标与损失函数3、创建模型4、训练5、预测2、多层感知器3、逻辑回归1、sigmoid函数2、交叉熵损失函数3、模型预测4、画图看损失和
- TensorFlow学习笔记--(1)张量的随机生成
Postlude
TensorFlowtensorflow学习笔记
张量的生成如何判断一个张量的维数:看张量的中括号有几层012:零维数列[246]:一维向量[[123][456]]:二维数组两行三列第一行数据为123第二行数据为456以此类推n维张量有n层中括号tf.zeros(%指定一个张量的维数%)生成一个全0的张量tf.ones(%指定一个张量的维数%)生成一个全1的张量tf.fill(%指定一个张量的维数%,%Value%)生成一个全为Value的张量随
- Tensorflow学习笔记:Keras函数式API
凿井而饮
tensorflow2pythontensorflow深度学习
目录一、简介二、使用相同的层计算图定义多个模型三、模型可像层一样被调用四、处理复杂计算图拓扑1.多输入多输出模型2.建立一个小的ResNet五、共享层六、提取和重用层计算图节点七、使用自定义层扩展API八、何时使用函数式API1.函数式API的优势2.函数式API的劣势九、混合搭配的API式样1.将函数式模型用作子类化模型的一部分:2.在函数式API中使用任何子类化层或模型一、简介函数式API创建
- tensorflow学习笔记--机器学习基础知识--(1)基本图像分类
爱玩的阿是
学习笔记pythontensorflow机器学习深度学习
学习教材是tensorflow官网上的新手教程为了让自己有更深的印象和理解,将自己的学习笔记记录基础分类:对于衣服的图片分类本指南训练了一个神经网络模型来对衣服的图像进行分类,例如运动鞋和衬衫。本指南使用tf.keras在TensorFlow中构建和训练模型。from__future__importabsolute_import,division,print_function,unicode_li
- TensorFlow学习笔记(未完待续)
苏钟白
tensorflow学习笔记
文章目录tf.Graph().as_default()sessiontensorflow.placeholder()tf.summarytf.Graph().as_default()withtf.Graph().as_default():withtf.device('/gpu:'+str(GPU_INDEX)):TensorFlow中所有计算都会被转化为计算图上的节点。是一个通过计算图的形式来表述
- TensorFlow学习笔记(四)—— 入门 —— 基本使用
tiankong19999
TensorFlowTensorFlow入门
教程地址:TensorFlow中文社区基本使用使用TensorFlow,你必须明白TensorFlow:使用图(graph)来表示计算任务.在被称之为会话(Session)的上下文(context)中执行图.使用tensor表示数据.通过变量(Variable)维护状态.使用feed和fetch可以为任意的操作(arbitraryoperation)赋值或者从其中获取数据.综述TensorFlow
- TensorFlow学习笔记(四)——tf.data API
七月七叶
tf.data.Datasetcsv文件读取为dataset并用于训练tfrecord1.tf.data.Datasettf.data.Dataset使用流程:(1)以源数据创建一个dataset;(2)对数据进行预处理;(3)遍历整个dataset,进行数据处理1.1SourceDatasets(1)由数组、列表等创建,将其转化为tensor#创建一个datasetdataset=tf.data
- tensorflow学习笔记————分类MNIST数据集
san.hang
人工智能python
在使用tensorflow分类MNIST数据集中,最容易遇到的问题是下载MNIST样本的问题。一般是通过使用tensorflow内置的函数进行下载和加载,fromtensorflow.examples.tutorials.mnistimportinput_datamnist=input_data.read_data_sets("MNIST_data",one_hot=True)但是我使用时遇到了“
- tensorflow学习笔记:运算函数、复数操作函数、规约计算、 序列比较与索引提取以及错误类
heart_ace
tensorflow学习笔记运算函数tensorflow错误类规约计算函数索引提前
运算函数、复数操作函数、规约计算、序列比较与索引提取以及错误类前一章提到了许多关于张量的操作函数,这里接着将一些运算函数、复数操作函数、规约计算、序列比较与索引提取以及错误类记录下来。算数运算函数函数描述tf.asign(x,y,name=None)令x=ytf.add(x,y,name=None)求和tf.subtract(x,y,name=None)减法tf.multiply(x,y,name
- JVM StackMapTable 属性的作用及理解
lijingyao8206
jvm字节码Class文件StackMapTable
在Java 6版本之后JVM引入了栈图(Stack Map Table)概念。为了提高验证过程的效率,在字节码规范中添加了Stack Map Table属性,以下简称栈图,其方法的code属性中存储了局部变量和操作数的类型验证以及字节码的偏移量。也就是一个method需要且仅对应一个Stack Map Table。在Java 7版
- 回调函数调用方法
百合不是茶
java
最近在看大神写的代码时,.发现其中使用了很多的回调 ,以前只是在学习的时候经常用到 ,现在写个笔记 记录一下
代码很简单:
MainDemo :调用方法 得到方法的返回结果
- [时间机器]制造时间机器需要一些材料
comsci
制造
根据我的计算和推测,要完全实现制造一台时间机器,需要某些我们这个世界不存在的物质
和材料...
甚至可以这样说,这种材料和物质,我们在反应堆中也无法获得......
 
- 开口埋怨不如闭口做事
邓集海
邓集海 做人 做事 工作
“开口埋怨,不如闭口做事。”不是名人名言,而是一个普通父亲对儿子的训导。但是,因为这句训导,这位普通父亲却造就了一个名人儿子。这位普通父亲造就的名人儿子,叫张明正。 张明正出身贫寒,读书时成绩差,常挨老师批评。高中毕业,张明正连普通大学的分数线都没上。高考成绩出来后,平时开口怨这怨那的张明正,不从自身找原因,而是不停地埋怨自己家庭条件不好、埋怨父母没有给他创造良好的学习环境。
- jQuery插件开发全解析,类级别与对象级别开发
IT独行者
jquery开发插件 函数
jQuery插件的开发包括两种: 一种是类级别的插件开发,即给
jQuery添加新的全局函数,相当于给
jQuery类本身添加方法。
jQuery的全局函数就是属于
jQuery命名空间的函数,另一种是对象级别的插件开发,即给
jQuery对象添加方法。下面就两种函数的开发做详细的说明。
1
、类级别的插件开发 类级别的插件开发最直接的理解就是给jQuer
- Rome解析Rss
413277409
Rome解析Rss
import java.net.URL;
import java.util.List;
import org.junit.Test;
import com.sun.syndication.feed.synd.SyndCategory;
import com.sun.syndication.feed.synd.S
- RSA加密解密
无量
加密解密rsa
RSA加密解密代码
代码有待整理
package com.tongbanjie.commons.util;
import java.security.Key;
import java.security.KeyFactory;
import java.security.KeyPair;
import java.security.KeyPairGenerat
- linux 软件安装遇到的问题
aichenglong
linux遇到的问题ftp
1 ftp配置中遇到的问题
500 OOPS: cannot change directory
出现该问题的原因:是SELinux安装机制的问题.只要disable SELinux就可以了
修改方法:1 修改/etc/selinux/config 中SELINUX=disabled
2 source /etc
- 面试心得
alafqq
面试
最近面试了好几家公司。记录下;
支付宝,面试我的人胖胖的,看着人挺好的;博彦外包的职位,面试失败;
阿里金融,面试官人也挺和善,只不过我让他吐血了。。。
由于印象比较深,记录下;
1,自我介绍
2,说下八种基本类型;(算上string。楼主才答了3种,哈哈,string其实不是基本类型,是引用类型)
3,什么是包装类,包装类的优点;
4,平时看过什么书?NND,什么书都没看过。。照样
- java的多态性探讨
百合不是茶
java
java的多态性是指main方法在调用属性的时候类可以对这一属性做出反应的情况
//package 1;
class A{
public void test(){
System.out.println("A");
}
}
class D extends A{
public void test(){
S
- 网络编程基础篇之JavaScript-学习笔记
bijian1013
JavaScript
1.documentWrite
<html>
<head>
<script language="JavaScript">
document.write("这是电脑网络学校");
document.close();
</script>
</h
- 探索JUnit4扩展:深入Rule
bijian1013
JUnitRule单元测试
本文将进一步探究Rule的应用,展示如何使用Rule来替代@BeforeClass,@AfterClass,@Before和@After的功能。
在上一篇中提到,可以使用Rule替代现有的大部分Runner扩展,而且也不提倡对Runner中的withBefores(),withAfte
- [CSS]CSS浮动十五条规则
bit1129
css
这些浮动规则,主要是参考CSS权威指南关于浮动规则的总结,然后添加一些简单的例子以验证和理解这些规则。
1. 所有的页面元素都可以浮动 2. 一个元素浮动后,会成为块级元素,比如<span>,a, strong等都会变成块级元素 3.一个元素左浮动,会向最近的块级父元素的左上角移动,直到浮动元素的左外边界碰到块级父元素的左内边界;如果这个块级父元素已经有浮动元素停靠了
- 【Kafka六】Kafka Producer和Consumer多Broker、多Partition场景
bit1129
partition
0.Kafka服务器配置
3个broker
1个topic,6个partition,副本因子是2
2个consumer,每个consumer三个线程并发读取
1. Producer
package kafka.examples.multibrokers.producers;
import java.util.Properties;
import java.util.
- zabbix_agentd.conf配置文件详解
ronin47
zabbix 配置文件
Aliaskey的别名,例如 Alias=ttlsa.userid:vfs.file.regexp[/etc/passwd,^ttlsa:.:([0-9]+),,,,\1], 或者ttlsa的用户ID。你可以使用key:vfs.file.regexp[/etc/passwd,^ttlsa:.: ([0-9]+),,,,\1],也可以使用ttlsa.userid。备注: 别名不能重复,但是可以有多个
- java--19.用矩阵求Fibonacci数列的第N项
bylijinnan
fibonacci
参考了网上的思路,写了个Java版的:
public class Fibonacci {
final static int[] A={1,1,1,0};
public static void main(String[] args) {
int n=7;
for(int i=0;i<=n;i++){
int f=fibonac
- Netty源码学习-LengthFieldBasedFrameDecoder
bylijinnan
javanetty
先看看LengthFieldBasedFrameDecoder的官方API
http://docs.jboss.org/netty/3.1/api/org/jboss/netty/handler/codec/frame/LengthFieldBasedFrameDecoder.html
API举例说明了LengthFieldBasedFrameDecoder的解析机制,如下:
实
- AES加密解密
chicony
加密解密
AES加解密算法,使用Base64做转码以及辅助加密:
package com.wintv.common;
import javax.crypto.Cipher;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;
import sun.misc.BASE64Decod
- 文件编码格式转换
ctrain
编码格式
package com.test;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
- mysql 在linux客户端插入数据中文乱码
daizj
mysql中文乱码
1、查看系统客户端,数据库,连接层的编码
查看方法: http://daizj.iteye.com/blog/2174993
进入mysql,通过如下命令查看数据库编码方式: mysql> show variables like 'character_set_%'; +--------------------------+------
- 好代码是廉价的代码
dcj3sjt126com
程序员读书
长久以来我一直主张:好代码是廉价的代码。
当我跟做开发的同事说出这话时,他们的第一反应是一种惊愕,然后是将近一个星期的嘲笑,把它当作一个笑话来讲。 当他们走近看我的表情、知道我是认真的时,才收敛一点。
当最初的惊愕消退后,他们会用一些这样的话来反驳: “好代码不廉价,好代码是采用经过数十年计算机科学研究和积累得出的最佳实践设计模式和方法论建立起来的精心制作的程序代码。”
我只
- Android网络请求库——android-async-http
dcj3sjt126com
android
在iOS开发中有大名鼎鼎的ASIHttpRequest库,用来处理网络请求操作,今天要介绍的是一个在Android上同样强大的网络请求库android-async-http,目前非常火的应用Instagram和Pinterest的Android版就是用的这个网络请求库。这个网络请求库是基于Apache HttpClient库之上的一个异步网络请求处理库,网络处理均基于Android的非UI线程,通
- ORACLE 复习笔记之SQL语句的优化
eksliang
SQL优化Oracle sql语句优化SQL语句的优化
转载请出自出处:http://eksliang.iteye.com/blog/2097999
SQL语句的优化总结如下
sql语句的优化可以按照如下六个步骤进行:
合理使用索引
避免或者简化排序
消除对大表的扫描
避免复杂的通配符匹配
调整子查询的性能
EXISTS和IN运算符
下面我就按照上面这六个步骤分别进行总结:
- 浅析:Android 嵌套滑动机制(NestedScrolling)
gg163
android移动开发滑动机制嵌套
谷歌在发布安卓 Lollipop版本之后,为了更好的用户体验,Google为Android的滑动机制提供了NestedScrolling特性
NestedScrolling的特性可以体现在哪里呢?<!--[if !supportLineBreakNewLine]--><!--[endif]-->
比如你使用了Toolbar,下面一个ScrollView,向上滚
- 使用hovertree菜单作为后台导航
hvt
JavaScriptjquery.nethovertreeasp.net
hovertree是一个jquery菜单插件,官方网址:http://keleyi.com/jq/hovertree/ ,可以登录该网址体验效果。
0.1.3版本:http://keleyi.com/jq/hovertree/demo/demo.0.1.3.htm
hovertree插件包含文件:
http://keleyi.com/jq/hovertree/css
- SVG 教程 (二)矩形
天梯梦
svg
SVG <rect> SVG Shapes
SVG有一些预定义的形状元素,可被开发者使用和操作:
矩形 <rect>
圆形 <circle>
椭圆 <ellipse>
线 <line>
折线 <polyline>
多边形 <polygon>
路径 <path>
- 一个简单的队列
luyulong
java数据结构队列
public class MyQueue {
private long[] arr;
private int front;
private int end;
// 有效数据的大小
private int elements;
public MyQueue() {
arr = new long[10];
elements = 0;
front
- 基础数据结构和算法九:Binary Search Tree
sunwinner
Algorithm
A binary search tree (BST) is a binary tree where each node has a Comparable key (and an associated value) and satisfies the restriction that the key in any node is larger than the keys in all
- 项目出现的一些问题和体会
Steven-Walker
DAOWebservlet
第一篇博客不知道要写点什么,就先来点近阶段的感悟吧。
这几天学了servlet和数据库等知识,就参照老方的视频写了一个简单的增删改查的,完成了最简单的一些功能,使用了三层架构。
dao层完成的是对数据库具体的功能实现,service层调用了dao层的实现方法,具体对servlet提供支持。
&
- 高手问答:Java老A带你全面提升Java单兵作战能力!
ITeye管理员
java
本期特邀《Java特种兵》作者:谢宇,CSDN论坛ID: xieyuooo 针对JAVA问题给予大家解答,欢迎网友积极提问,与专家一起讨论!
作者简介:
淘宝网资深Java工程师,CSDN超人气博主,人称“胖哥”。
CSDN博客地址:
http://blog.csdn.net/xieyuooo
作者在进入大学前是一个不折不扣的计算机白痴,曾经被人笑话过不懂鼠标是什么,