- 基于Damo-YOLO和DyHead检测头的YOLOv8优化:多尺度目标检测的创新方案【YOLOv8】
步入烟尘
YOLO系列创新涨点超专栏YOLO目标检测人工智能YOLOv8
本专栏专为AI视觉领域的爱好者和从业者打造。涵盖分类、检测、分割、追踪等多项技术,带你从入门到精通!后续更有实战项目,助你轻松应对面试挑战!立即订阅,开启你的YOLOv8之旅!专栏订阅地址:https://blog.csdn.net/mrdeam/category_12804295.html文章目录基于Damo-YOLO和DyHead检测头的YOLOv8优化:多尺度目标检测的创新方案【YOLOv8
- 提升YOLOv8性能:用Swin Transformer替换Backbone的详细实现与分析【YOLOv8】
步入烟尘
YOLO系列创新涨点超专栏YOLOv8YOLO目标跟踪
本专栏专为AI视觉领域的爱好者和从业者打造。涵盖分类、检测、分割、追踪等多项技术,带你从入门到精通!后续更有实战项目,助你轻松应对面试挑战!立即订阅,开启你的YOLOv8之旅!专栏订阅地址:https://blog.csdn.net/mrdeam/category_12804295.html文章目录YOLOv8改进|主干篇|SwinTransformer替换Backbone(附代码+详细修改步骤+
- YOLOv8与Transformer:探索目标检测的新架构
AI架构设计之禅
AI大模型应用入门实战与进阶大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
YOLOv8与Transformer:探索目标检测的新架构关键词:目标检测,深度学习,YOLOv8,Transformer,计算机视觉,卷积神经网络摘要:目标检测是计算机视觉领域的一项重要任务,其目标是从图像或视频中识别和定位特定对象。近年来,YOLO(YouOnlyLookOnce)系列算法以其高精度和高速度成为目标检测领域的佼佼者。最新版本的YOLOv8引入了Transformer架构,进一步
- 两万字探讨时间轮算法
Damon_0411
算法javaspring
1.引言1.1背景介绍随着分布式系统、微服务架构的流行以及高并发场景的广泛应用,系统中处理延时任务的需求变得愈发重要。延时任务的常见场景包括:任务调度:某些任务需要按照预定时间执行,比如每天的定时数据备份。超时控制:网络连接的超时检测、数据库锁的释放延迟等。缓存管理:缓存数据的过期清理策略。事件驱动场景:如日志系统中,只有当所有日志接收完毕并经过一定延迟后才能触发归档。延时任务的本质是系统需要管理
- Linux 判断tcp socket连接断开的方法
timbey
linuxsockettcpip
LinuxC代码客户端判断tcpsocket连接断开或丢失的方法当建立TCPsocket连接后,作为客户端需要对tcp的连接做维护。如果连接断开需要重连等操作。但是在sockettcpC库代码中没有提供判断连接是否正确的接口调用函数。实际上,使用tcp连接后,调用read函数读取socket时,正常情况下是会阻塞。当接收到数据时才会读出。所以可以判断当read时未阻塞,并且返回值为0或-1时,可以
- 从0到1:AI微信红包开发全攻略,小白也能轻松上手!
人工智能cursor程序员
AI编程时代真的来了!最近我重度沉迷AI编程,发现它简直是开发神器,前端页面、后端服务,都能轻松搞定,效率直接起飞!最近临近过年,我突然冒出一个想法:为什么不试试用AI来做个微信红包呢?说干就干!1.明确需求要用AI做红包,首先得了解微信红包的规则。简单来说,我们需要一张精美的红包封面图,它会出现在发红包、消息气泡、拆红包、详情页等四个地方。而且尺寸也有要求,是957×1278像素。看起来有点复杂
- 基于区块链的云上数据访问控制模型研究
XLYcmy
论文阅读阅读笔记网络安全论文阅读论文笔记区块链访问控制云数据
论⽂选择理由:汉语论⽂,对于新⼿⼊⼿阅读相对容易之前,进⾏过区块链⽅⾯的研究,有⼀定基础⽅便理解论⽂通读情况:①基本掌握论⽂所提出背景和要解决的问题②⼤致理解论⽂所提出的⽅案和优势收获:⼤致梳理出⼀篇做的架构:(我的理解)背景→现有⽅案不⾜→预备免识→提出⽅案→⽅案核⼼设计与算法→与其他⽅案对比→设计实验环境与实验指标进⾏⽅案验证→总结与展望
- ST编程指南详细写作大纲
阿凡工控分享
ST编程指南PLC
从今天开始除了做视频,也是应一些后台观众的需求,希望我将ST编程单独说明,纵观网上这么多教程,大多很零散,而且不全面,所以我打算开个坑,自己写一个ST编程指南,希望能够帮助到大家,这里需要说明一点,这一次创作并不是免费的,因为做视频本身就很占用我的时间了,写作的话,也是希望大家多多赞赏或者付费支持下我,谢谢了!以下是我打算的一个大纲。引言1.1ST语言简介ST(StructuredText)的定义
- python读取文件路径中有中文_转 python 读取中文文件名/中文路径
weixin_39845406
原博文2015-03-1322:22−python直接读取中文路径的文件时失败,可做如下处理:inpath='D:/work/yuanxx/在线导航/驾车导航/walk_log/20130619_172355.txt'uipath=unicode(ipath,"utf8")然后用"uipath"经...相关推荐2015-12-1421:45−前言:需要对某目录下的文件进行分类,目录是中文名字就会报
- 计算机视觉与深度学习:使用深度学习训练基于视觉的车辆检测器(MATLAB源码-Faster R-CNN)
ZhShy23
javascript深度学习
在人工智能领域,计算机视觉是一个重要且充满活力的研究方向。它使计算机能够理解和分析图像和视频数据,从而做出有意义的决策。其中,目标检测是计算机视觉中的一项关键技术,它旨在识别并定位图像中的多个目标对象。车辆检测作为目标检测的一个重要应用,在自动驾驶、智能交通系统等领域有着广泛的应用前景。本文将介绍如何使用MATLAB和深度学习技术,特别是FasterR-CNN模型,来训练一个车辆检测器。文章目录一
- gan 总结 数据增强_两幅图像!这样能训练好 GAN 做图像转换吗?
weixin_39972741
gan总结数据增强
前言GAN似乎离不开大量的训练数据量。之前在知乎回答过一个问题,关于用GAN做数据增强的个人鄙见:https://www.zhihu.com/question/372133109/answer/1081321788GAN作为一种生成模型,很多人以为它主要用途是进行数据增广。但是在这一方面,GAN是有很多局限之处的。首先,GAN不好训练,目前的技术还是需要大量训练样本。而一旦有大量训练样本,那GAN
- UART中的奇偶校验和粘性奇偶校验(stick parity)
马志高
接口与协议IC验证
1.UART传输UART传输分为起始位,数据位(从低到高),奇偶校验位,停止位,我们这里详细介绍一下奇偶校验位。2.奇偶校验位奇偶校验是一种常见的校验位方法,用于检测数据传输中的错误。奇校验:数据位的1的个数加上附加位的1的个数为奇数偶校验:数据位的1的个数加上附加位的1的个数为偶数举个例子,假设我们有一个UART串口通信系统,每个数据帧包含8位数据和1位奇偶校验位。我们选择奇校验。数据帧1:数据
- LiteFlow决策系统的策略模式,顺序、最坏、投票、权重
后端
个人博客:无奈何杨(wnhyang)个人语雀:wnhyang共享语雀:在线知识共享Github:wnhyang-Overview想必大家都有听过或做过职业和性格测试吧,尤其是现在的毕业生,在投了简历之后经常会收到一个什么测评,那些测评真的是又臭又长,做的简直让人崩溃,很多时候都是边骂边做,都什么玩意!?然而,本篇就由此出发,把整个测评作为一个策略的话,其中每一项都是一条规则,通常每一条规则(问答)
- DNA图谱分析:自动分析DNA图谱中的变异YOLOv5、YOLOv8、YOLOv10
2025年数学建模美赛
YOLO深度学习目标跟踪机器人人工智能
目录引言项目背景与目标YOLO模型简介DNA图谱数据集准备YOLOv5、YOLOv8和YOLOv10模型训练与优化DNA图谱变异检测的实现UI界面设计与实现评估与优化未来展望结论完整代码实现1.引言随着基因组学的进步,DNA图谱分析已经成为基因检测、疾病诊断、遗传学研究等领域的重要工具。在DNA图谱中,通常会呈现出染色体的多个片段,其中的一些变异可能对健康产生深远的影响。手工分析DNA图谱变异不仅
- 具体毕设方案100例之第4例STM32智能家居烟雾温度火灾防盗报警系统设计版本4
李学长单片机毕设
单片机毕设具体方案课程设计stm32智能家居单片机毕业设计嵌入式硬件51单片机
LCD1602液晶显示:实时展现当前检测到的烟雾浓度值,为用户提供直观的视觉信息。按键设置报警上限:用户可通过简单操作按键,自定义烟雾浓度的报警阈值,以满足不同场景的安全需求。蜂鸣器报警:当烟雾浓度超过用户设定的报警值时,蜂鸣器将立即启动,发出声音报警,提醒用户注意安全。无线WiFi传输:通过集成的ESP8266无线WiFi模块,将烟雾浓度数据实时传输至用户手机端,实现远程监控与数据查看。继电器模
- 风控系统建设,指标策略规则流程设计,LiteFlow隐式子流程,构造EL和Chain
个人博客:无奈何杨(wnhyang)个人语雀:wnhyang共享语雀:在线知识共享Github:wnhyang-Overview简介前面有很多文章已经说了,我要利用LiteFlow做风控系统。至于进度嘛,只能尽力而为,毕竟我的惰性也很强。下面是目前Git的提交记录,代码托管在Github和Gitee,但是是私有仓库,因为还不是开放的时候,还有很多要做的。其中能梳理的仅是主流程的TODO都有下面这么
- 鸿蒙+flutter 干货来咯!
程序媛-雪儿
鸿蒙ArkTSharmonyosflutter华为鸿蒙混合开发
好多人在纯撸鸿蒙,极少公司走鸿蒙+flutter的路线,你们想走这个路线的,我给你们趟坑了我做的时候是24年3月份,那会好多库不支持,让给官方提供了一下我的项目里面的库,后来他们填完,基本一半不支持,如今6月份了,适配的差不多了,flutter_flutter也升级了,对应鸿蒙api12的flutter版本也已经升级了。如何在MacOS上使用Flutter构建鸿蒙App1、相关库主要是2个Flut
- 你会选择java还是node做后台管理
web网站装修工
vue.js前端javascript前端框架node.jsjava后端
目前后台开源千千万,但说好用且容易上手的也就那几个。node和java就看你怎么选了如果你擅长Java,那RuoYi首选RuoYI后台管理系统https://gitee.com/y_project/RuoYi-Vue有vue2又有vue3。MIT协议全免费开源,功能齐全!如果你擅长Node,那vue-node这个开源后台管理系统最合适了vue-node后台管理https://gitee.com/M
- Kaggle欺诈检测:使用生成对抗网络(GAN)解决正负样本极度不平衡问题
Loving_enjoy
论文深度学习计算机视觉人工智能
###Kaggle欺诈检测:使用生成对抗网络(GAN)解决正负样本极度不平衡问题####引言在金融领域中,欺诈检测是一项至关重要的任务。然而,欺诈交易数据往往呈现出正负样本极度不平衡的特点,这给机器学习模型的训练带来了挑战。传统的分类算法在面对这种不平衡数据时,往往会导致模型对多数类(正常交易)过拟合,而对少数类(欺诈交易)的识别能力较差。为了解决这个问题,生成对抗网络(GAN)提供了一种有效的手
- YOLOv10改进,YOLOv10检测头融合RepConv卷积,添加小目标检测层(四头检测)+CA注意机制,全网首发
挂科边缘
YOLOv10改进YOLO目标检测人工智能计算机视觉
摘要作者提出了一种简单而强大的卷积神经网络架构,其推理阶段采用与VGG类似的网络体结构,仅由一堆3x3卷积和ReLU组成,而训练阶段的模型具有多分支拓扑。这种训练阶段和推理阶段架构的解耦通过结构重参数化技术实现,因此我们将该模型命名为RepVGG。#理论介绍RepConv通过将多个卷积操作合并成一个卷积操作来优化计算的。首先在训练过程中使用多种操作(如多个卷积层、跳跃连接等)来提高模型的表达能力和
- 工作中常用 CMD 命令
书生-w
windowscmd
文章目录1.网络排障与端口检查1.1检测网络连通性1.2路由追踪1.3查看端口占用与连接状态2.进程管理2.1查看进程列表2.2结束指定进程3.文件与目录操作3.1快速查找并筛选日志3.2批量复制或镜像目录4.环境变量与系统信息4.1设置临时环境变量4.2设置系统环境变量4.3查看系统信息5.批处理脚本与自动化5.1将命令封装成`.bat`脚本5.2重定向和管道组合6.远程管理与故障排查6.1Te
- netty~ 基于netty实现服务端的长连接
17245
NIO~NettyNetty长连接心跳检测ScheduledFuture消息编码解码
描述socket长连接即服务端不断开客户端channel的连接,客户端需要定时向服务端进行心跳检测,服务端需要将过期未进行心跳检测的socket关闭。服务端关闭过期的channel连接:Netty提供了ScheduledFuture,可以通过ChannelHandlerContext.executor().schedule()创建,支持延时提交,也支持取消任务,为自动关闭提供了一个很好的实现方案。
- 数据可信流通
HZGame.
大数据网络运维
主讲老师:韦韬学习链接:第1讲:数据可信流通,从运维信任到技术信任丨隐私计算实训营第1期_哔哩哔哩_bilibili【一图读懂|数据二十条】-国家发展和改革委员会(ndrc.gov.cn)“数据二十条”对外发布,构建数据基础制度体系——做强做优做大数字经济_政策解读_中国政府网(www.gov.cn)通过以上的图片和链接,让我们可以了解什么是“数据二十条”,建立数据来源可确认、使用范围可界定、流通
- YOLOv11改进,YOLOv11检测头融合RepConv卷积,并添加小目标检测层(四头检测),适合目标检测、分割等任务
挂科边缘
YOLOv8改进YOLO目标检测人工智能计算机视觉
摘要作者提出了一种简单而强大的卷积神经网络架构,其推理阶段采用与VGG类似的网络体结构,仅由一堆3x3卷积和ReLU组成,而训练阶段的模型具有多分支拓扑。这种训练阶段和推理阶段架构的解耦通过结构重参数化技术实现,因此我们将该模型命名为RepVGG。#理论介绍RepConv通过将多个卷积操作合并成一个卷积操作来优化计算的。首先在训练过程中使用多种操作(如多个卷积层、跳跃连接等)来提高模型的表达能力和
- AI 在播客领域的应用
姚家湾
播客AI
播客以语言交谈为主,是大语言模型AI可以大展拳脚的地方,比如播客简介,播客节目笔记(shownotes)的自动化生成,播客节目单自动化推荐等等。笔者做了一些探索性实验工作,结果发现,在现有播客的文本描述(通常称为播客的元数据)基础上实现AI推荐是不理想的。这主要是现有的播客节目的文本元数据质量参差不齐,大模型难以做矢量搜索和内容生成。播客元数据存在的问题目前播客存在的问题:播客节目的名称太长,夹杂
- NLP 中文拼写检测纠正论文 Automatic-Corpus-Generation 代码
后端java
拼写纠正系列NLP中文拼写检测实现思路NLP中文拼写检测纠正算法整理NLP英文拼写算法,如果提升100W倍的性能?NLP中文拼写检测纠正Paperjava实现中英文拼写检查和错误纠正?可我只会写CRUD啊!一个提升英文单词拼写检测性能1000倍的算法?单词拼写纠正-03-leetcodeedit-distance72.力扣编辑距离NLP开源项目nlp-hanzi-similar汉字相似度word-
- 别再被坑了! JavaScript类型检测的最佳实践
别再被坑了!JavaScript类型检测的最佳实践在JavaScript中,我们经常需要判断一个变量的类型。这个需求在编程中非常常见,因为不同类型的数据会影响到我们的代码逻辑。JavaScript提供了几种方法来检测数据类型,每种方法都有自己的优缺点。Object.prototype.toString.call()这是最万能的方法。它可以准确识别所有的JavaScript内置类型,包括基本类型和复
- 深入了解卷积神经网络(CNN):图像处理与深度学习的革命性技术
wit_@
cnnpython机器学习深度学习scikit-learn
深入了解卷积神经网络(CNN):图像处理与深度学习的革命性技术导语卷积神经网络(CNN)是现代深度学习领域中最重要的模型之一,特别在计算机视觉(CV)领域具有革命性的影响。无论是图像分类、目标检测,还是人脸识别、语音处理,CNN都发挥了举足轻重的作用。随着技术的不断发展,CNN已经成为了解决众多实际问题的核心工具。但对于许多人来说,CNN仍然是一个相对复杂的概念,尤其是初学者可能会被其背后的数学原
- 【YOLOV8】YOLOV8模型训练train及参数详解
小小小小祥
YOLO
介绍训练深度学习模型涉及为其提供数据并调整其参数,以便它能够做出准确的预测。UltralyticsYOLOv8的训练模式专为有效、高效地训练目标检测模型而设计,充分利用现代硬件的能力。本指南旨在涵盖使用YOLOv8强大功能集训练自定义模型所需的所有细节,帮助你快速入门。为什么选择UltralyticsYOLO进行训练?高效性:无论是单GPU设置还是跨多个GPU扩展,都能充分利用你的硬件。多功能性:
- 【YOLOV8】目标检测任务中应该如何选择YOLOV8n/s/m/l/x模型及输入尺寸大小
小小小小祥
YOLO目标检测人工智能
问题描述:YOLOV8作为目前主流的深度学习网络,支持图像分类、目标检测、实例分割、姿态检测、旋转目标检测等功能。对于目标检测任务官方提供了n/s/m/l/x五个模型,我们在使用YOLOV8模型进行自己任务训练时,应该如何选择YOLOV8的模型以及输入尺寸大小呢?YOLOV8官网:https://github.com/ultralytics/ultralyticsYOLOV8n/s/m/l/x信息
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$