- 【数据结构】一.绪论
因兹菜
数据结构
1.什么是数据结构?(1)五个基本概念:数据:能被输入进电脑进行处理的所有信息符号的总称,包括文字,声音,图片视频等等;数据项:数据的最小单位数据元素:数据的基本单位;一个数据元素可以由若干个数据项组成;比如:一条书目的信息为一个数据元素,而其中书的价格,作者,出版社等信息就是一个个数据项数据对象:性质相同的数据元素的集合;比如在一个数组中,每一个元素都是数据元素,而一整个数组是一个数据对象数据结
- 使用 Go Zero 开发 FPS 游戏后端接口文档
阿贾克斯的黎明
游戏开发后端
目录使用GoZero开发FPS游戏后端接口文档一、用户管理微服务1.注册接口2.登录接口3.账号信息管理接口二、游戏匹配微服务1.匹配算法接口2.匹配队列接口三、游戏房间管理微服务1.房间创建接口2.房间加入接口3.房间状态管理接口四、游戏逻辑处理微服务1.玩家操作处理接口1.玩家操作处理接口2.碰撞检测接口3.伤害计算接口五、数据存储与管理微服务1.玩家数据存储接口2.游戏数据存储接口错误码与异
- 从System Prompt来看Claude3、Kimi和ChatGLM4之间的差距
herosunly
大模型systempromptgpt4claudekimiChatGLM4
大家好,我是herosunly。985院校硕士毕业,现担任算法t研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了从SystemPrompt来看Claude3、Kimi和ChatGLM
- 基于face_recognition的人脸识别
#北极星star
人脸识别人工智能opencv计算机视觉
目录一.简要介绍二.相关函数三.算法流程四.代码实现五.效果展示一.简要介绍face_recognition是一个基于Python的开源人脸识别库,它使用dlib库中的深度学习模型来实现人脸识别功能。这个库以其简洁的API和高效的性能而广受欢迎,成为许多开发者和研究者的首选工具。face_recognition库的主要功能包括:1.人脸检测:识别图像中所有的人脸并返回其位置信息。2.人脸编码:将检
- React 高阶组件(HOC)
web Rookie
Reactreact.jsjavascript前端
文章目录一.高阶组件(HOC)的定义二.HOC的作用和优势三.HOC的使用方式四.HOC的注意事项和潜在问题五.应用场景1.权限控制与认证2.数据获取与预加载3.样式和主题管理4.性能优化-缓存数据或组件渲染结果5.日志记录与调试辅助六.总结一.高阶组件(HOC)的定义高阶组件(Higher-OrderComponent,简称HOC)是一种在React中用于复用组件逻辑的高级技术。它本质上是一个函
- Spring Boot 篇五: Log的使用
alvachien
JavaSpringBootspringbootloglogbackspring
本文目录Log在Spring的前世今生log4j,logback和log4j2SLF4JAPI使用Logbackloggerrootappenderappendfilterencoderfile和rollingPolicy一些实际案例不写入Console的日志在Console显示日志,但将错误写入文件使用log4j2Log在Spring的前世今生Log对于任一系统的重要性不言而喻。跟JPA类似,S
- CNN的各种知识点(五):平均精度均值(mean Average Precision, mAP)
墨绿色的摆渡人
CNN的各种知识点零碎知识点cnn均值算法目标跟踪
平均精度均值(meanAveragePrecision,mAP)1.平均精度均值(meanAveragePrecision,mAP)概念:计算步骤:具体例子:重要说明:典型值范围:总结:好的,我将分两部分详细解答您的问题:1.平均精度均值(meanAveragePrecision,mAP)概念:mAP是目标检测中最常用的评估指标,综合反映模型在不同召回率下的平均精度表现。其核心是计算每个类别的平均
- Python从0到100(八十一):神经网络-Fashion MNIST数据集取得最高的识别准确率
是Dream呀
python神经网络开发语言
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 系统架构师(二)案例题
新新许愿树
#系统架构师职场和发展
目录一、软件结构设计(一)软件质量属性(二)风险,敏感点,权衡点二、结构化软件系统建模(一)流程图和数据流图(二)实体和类的区别(三)EssentialUseCases和RealUseCases(四)状态图和活动图(五)用例建模三、软件系统架构选择(一)能写的架构风格-论文(二)什么是软件架构风格,面向对象和控制环路两种架构各自风格的特点(三)主程序-子程序和管道-过滤器这两种架构风格的特点(四)
- 某店铺收银系统开发总结
我是一道光_
工作测试数据库
我们的某店铺收银系统(包括前台pos机销售应用、后台信息管理)已经基本结束了,最近大家都忙专业考试,不得已将开发工作搁置了一段时间,现在基本上闲下来了,就剩下系统部署、发布,进行最后测试了。这次合作开发实练,我忝为组长,感触颇多,说实话,现场有点混乱。l合作开发问题多人合作开发,是鉴于五期两个师哥苦苦做了7、8个月的ERP项目的失败而从我们六期开始进行的一个新举措,也算是一种公司项目研发的仿真。说
- 海外b端设计为何都如此大胆,五点因素帮你解除疑问
大有数据可视化
网页UI管理系统英文界面
一、开放的市场环境海外市场通常具有更加开放和竞争激烈的特点。在这样的环境下,企业需要不断创新才能脱颖而出。大胆的设计成为了一种吸引客户、展示企业实力和独特性的有效手段。开放的市场环境鼓励企业尝试新的设计理念和方法,因为只有敢于创新,才能在众多竞争对手中占据优势。二、多元的文化背景海外国家拥有丰富多元的文化背景,这为B端设计带来了更多的灵感和创意。不同的文化有着不同的审美观念、价值观和设计风格,设计
- 电脑故障排查实战篇之:预订台预订表数据为何在第二天无故失踪”
u010088809
电脑故障排除实战经验电脑服务器运维
电脑故障排障系列文章目录一、故障初现:隐患的开端二、波折频发:迷雾中的探寻三、艰难排查:困境与突破的交织四、真相大白:拨开云雾见青天五、经验之谈:反思与启示文章目录电脑故障排障系列文章目录前言总结前言在信息技术飞速发展的今天,电脑已然成为我们工作中不可或缺的得力助手。然而,电脑故障却像隐藏在暗处的“幽灵”,随时可能给我们的工作带来困扰。对于从事网络维护工作的人来说,快速准确地排查和解决电脑故障,保
- python 五 文件操作 读取大文件
空灵宫(Ethereal Palace)
pythonpythonjava前端
读取大文件时,为了避免占用过多内存,通常会采用分块读取的方式。以下是几种处理大文件的常见方法:1.使用迭代读取文件(逐行读取)使用for循环逐行读取文件,这种方法高效且占用内存小。#逐行读取文件withopen("large_file.txt",mode="r",encoding="utf-8")asfile:forlineinfile:#处理每一行数据print(line.strip())#去掉
- 第五章 Opencv图像处理框架实战 5-7图像金字塔与轮廓检测
老张谋
AI--深度学习opencv图像处理人工智能
1、图像金字塔定义图像金字塔¶高斯金字塔拉普拉斯金字塔高斯金字塔:向下采样方法(缩小)高斯金字塔:向上采样方法(放大)
- python cv2 matchtemplate_机器学习进阶-图像金字塔与轮廓检测-模板匹配(单目标匹配和多目标匹配)1.cv2.matchTemplate(进行模板匹配) 2.cv2.minMa...
weixin_39621044
pythoncv2matchtemplate
1.cv2.matchTemplate(src,template,method)#用于进行模板匹配参数说明:src目标图像,template模板,method使用什么指标做模板的匹配度指标2.min_val,max_val,min_loc,max_loc=cv2.minMaxLoc(ret)#找出矩阵中最大值和最小值,即其对应的(x,y)的位置参数说明:min_val,max_val,min_lo
- 机器学习进阶-图像金字塔与轮廓检测-图像金字塔(拉普拉斯金字塔)
weixin_33908217
人工智能python
拉普拉斯金字塔:使用原始图片-pyrUp(pyrDown(Gi)),获得的结果有一点像边缘轮廓的提取上图的意思:1.进行低通滤波2.进行样本的下采样3.进行样本的上采样4.原始图片-经过上面三步后的图片代码:第一步:读入图片第二步:进行样本的下采样第三步:进行样本的上采样第四步:原始图片-变化后的图片importcv2importnumpyasnpimg=cv2.imread('AM.png')#
- mysql商品查询_mysql的查询、子查询及连接查询(商城查询常用)
weixin_32200323
mysql商品查询
一、mysql查询的五种子句where(条件查询)、having(筛选)、groupby(分组)、orderby(排序)、limit(限制结果数)1、where常用运算符:比较运算符>,),>=,selectid,namefromuserwhereidin(7,9,11,100);+----+-----------+|id|name|+----+-----------+|7|娲紵楣?||9|CC
- django多种查询筛选数据库方式
Sean_TS_Wang
Djangopostgresqldjango
简介本文主要整理了Django多种针对postgresql数据库所支持的查询方式目录简介目录正文一、使用Python直接操作数二、使用Django执行数据库查询语句Django使用游标执行SQL查询语句Djangoraw执行SQL查询语句三、Django使用extra拆分SQL语句执行参数说明四、使用DjangoORM进行简单数据库查询五、使用双下划线查询六、关联表使用下划线查询外键关联查询多对多
- MarkDown 语法学习
2501_90252715
学习
###四级标题####五级标题#####六级标题######横线–***---___*字型–斜体:**粗体:****斜粗体******HTML斜体:HTML粗体:HTML粗斜体:引用–>>>>>>...时间过得好快。Timeflies–zmsAndroidDeveloper莫忘初衷。正文内容清单–---1.2.3.***+++清单1.1清单1.2清单1.3清单2.1清单2.2清单2.3abcaaa
- 决策树ID3算法
小波LFZZB
算法决策树机器学习数据挖掘sklearn
决策树决策树概念决策树,一种基于规则的机器学习方法,主要用于分类和回归,常用作机器学习中的预测模型。树形结构图,树中每个节点表示某个对象,每个分叉路径代表的某个可能的属性值,每个叶结点对应从根节点到该叶节点所经历的路径所表示的对象的值。它通过递归地划分数据空间并在每个分区内拟合一个简单的预测模型来工作。选择分区是为了在每个细分中最大化目标变量的同质性。决策树特点1.树形结构决策树由根节点、内部节点
- 华为OD2024机试最新E卷题库-(A+B+C+D+E)
蜗牛快快快快跑
华为od算法数据结构贪心算法排序算法动态规划
在这个精心策划的专栏中,我们聚焦于华为OD2024机试的最新E卷题库,涵盖JS、C、C++、Java与Python五大编程语言,旨在为挑战者提供全面而深入的备战资源。这里不仅有精选的实战题目,还有详尽的解题思路与代码实现,帮助你掌握核心算法,理解数据结构,提升编程技巧。以下是每个卷宗的详细,可以通过直接点击试卷链接查看练习试卷编号备注OD-E卷原题+个人代码+思路解析,95%以上的通过率,方便大家
- 第五节图像像素的算数操作
没学上了
人工智能linux运维
知识点像素的算数操作+add,减subtract,乘multiply,除divide注意点:图像的数据类型,通道数目,大小必须相同修改参数来调节图片的参数voidQUickdemo::operators_demo(Mat&image){Matdst;dst=image-Scalar(50,50,50);--三元素BGR.当改为乘法操作时会出现报错,原因是超过阈值namedWindow("meitu
- 软件工程概论试题五
minaMoonGirl
软件工程
一、多选1.好的软件的基本属性包括()。A.效率B.可依赖性和信息安全性C.可维护性D.可接受性正答:ABCD2.软件工程的三要素是什么()?A.结构化B.工具C.面向对象D.数据流!E.方法F.过程正答:BEF3.下面中英文术语对照哪些是正确的、且是属于非功能性需求的指标?(A.可靠性RobustnessB.可移植性PortabilityC.易用性EaseofuseD.鲁棒性Reliabilit
- 监督学习、无监督学习和强化学习的特点和应用场景
BugNest
AI学习ai机器学习人工智能
在机器学习中,监督学习、无监督学习和强化学习是三种核心的学习范式,它们各自具有独特的特点和应用场景。以下是对这三种学习方法的详细对比和总结:监督学习(SupervisedLearning)特点:数据标注:训练数据包含明确的输入特征和对应的标签(目标输出)。学习方式:模型通过学习输入特征和标签之间的关系来进行训练,这种关系通常表现为一个映射函数。预测能力:一旦训练完成,模型能够对新的、未见过的输入数
- 【数据库】MongoDB深度解析与Python操作指南:从安装到实战操作全覆盖
易辰君
数据库数据库mongodb
目录前言一、MongoDB的特点二、Mongo的核心概念三、MongoDB的优劣势四、使用场景五、MongoDB与其他数据库的对比六、如何安装MongoDB七、数据库指令操作(一)基本数据库操作(1)连接MongoDB(2)显示所有数据库(3)选择数据库(4)显示当前数据库(二)集合操作(1)显示集合列表(2)创建集合(3)删除集合(三)文档(数据)操作(1)插入文档(2)查询文档(3)更新文档(
- echarts设置标题样式,echarts设置主标题和副标题样式
weixin_39620684
echarts设置标题样式
1.标题想将文字为标题,只需要在文字前面加上#,再在#后加一个空格即可。可分为一、二、三、四、五、六级标题,只需要增加#,每增加一个#,标题字号相应降低一级。代码如下:效果如下:…2021/3/130:37:16栈是一种操作受限的线性表,只允许从栈顶插入和删除数据,所以每次删除的元素都是最后进栈的元素,故栈也被称为后进先出(LIFO)表。栈主要包含两个操作,入栈(也叫做压栈)和出栈…2021/3/
- python(scikit-learn)实现k均值聚类算法
嘿哈哈哈哈哈哈
机器学习聚类python算法机器学习人工智能
k均值聚类算法原理详解示例为链接中的例题直接调用python机器学习的库scikit-learn中k均值算法的相关方法fromsklearn.clusterimportKMeansimportnumpyasnpimportmatplotlib.pyplotaspltx=np.array([[0,2],[0,0],[1,0],[5,0],[5,2]])#计算k均值聚类kmeans=KMeans(n_
- Scikit-Learn K均值聚类
对许
#Python#人工智能与机器学习scikit-learn聚类机器学习
Scikit-LearnK均值聚类1、K均值聚类1.1、K均值聚类及原理1.2、K均值聚类的优缺点1.3、聚类与分类的区别2、Scikit-LearnK均值聚类2.1、Scikit-LearnK均值聚类API2.2、K均值聚类初体验(寻找最佳K)2.3、K均值聚类案例1、K均值聚类K-均值(K-Means)是一种聚类算法,属于无监督学习。K-Means在机器学习知识结构中的位置如下:1.1、K均值
- 数据挖掘常用算法优缺点分析
天波烟客00
数据挖掘数据挖掘机器学习
领取机器学习视频教程:http://www.admin444.com/P-c8129a48常用的机器学习、数据挖掘方法有分类,回归,聚类,推荐,图像识别等。在实际应用中,一般都是采用启发式学习方式来实验。偏差&方差偏差:描述的是预测值(估计值)的期望与真实值之间的差距,偏差越大,越偏离真实数据。偏差bias其实是模型太简单而带来的估计不准确的部分---欠拟合方差:描述的是预测值的变化范围、离散程度
- 使用 Python 的 LSTM 进行股市预测
无水先生
数据分析深度学习人工智能综合pythonlstm开发语言
目录一、说明二、为什么需要时间序列模型?三、下载数据3.1从Alphavantage获取数据3.1从Kaggle获取数据3.3数据探索3.4数据可视化四、将数据拆分为训练集和测试集五、数据标准化六、通过平均进行一步预测6.1标准平均值6.2指数移动平均线6.3如果指数移动平均线这么好,为什么还需要更好的模型?6.4预测未来不止一步七、LSTM简介:预测未来的股票走势7.1数据生成器7.2数据增强7
- 分享100个最新免费的高匿HTTP代理IP
mcj8089
代理IP代理服务器匿名代理免费代理IP最新代理IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
120.198.243.130:80,中国/广东省
58.251.78.71:8088,中国/广东省
183.207.228.22:83,中国/
- mysql高级特性之数据分区
annan211
java数据结构mongodb分区mysql
mysql高级特性
1 以存储引擎的角度分析,分区表和物理表没有区别。是按照一定的规则将数据分别存储的逻辑设计。器底层是由多个物理字表组成。
2 分区的原理
分区表由多个相关的底层表实现,这些底层表也是由句柄对象表示,所以我们可以直接访问各个分区。存储引擎管理分区的各个底层
表和管理普通表一样(所有底层表都必须使用相同的存储引擎),分区表的索引只是
- JS采用正则表达式简单获取URL地址栏参数
chiangfai
js地址栏参数获取
GetUrlParam:function GetUrlParam(param){
var reg = new RegExp("(^|&)"+ param +"=([^&]*)(&|$)");
var r = window.location.search.substr(1).match(reg);
if(r!=null
- 怎样将数据表拷贝到powerdesigner (本地数据库表)
Array_06
powerDesigner
==================================================
1、打开PowerDesigner12,在菜单中按照如下方式进行操作
file->Reverse Engineer->DataBase
点击后,弹出 New Physical Data Model 的对话框
2、在General选项卡中
Model name:模板名字,自
- logbackのhelloworld
飞翔的马甲
日志logback
一、概述
1.日志是啥?
当我是个逗比的时候我是这么理解的:log.debug()代替了system.out.print();
当我项目工作时,以为是一堆得.log文件。
这两天项目发布新版本,比较轻松,决定好好地研究下日志以及logback。
传送门1:日志的作用与方法:
http://www.infoq.com/cn/articles/why-and-how-log
上面的作
- 新浪微博爬虫模拟登陆
随意而生
新浪微博
转载自:http://hi.baidu.com/erliang20088/item/251db4b040b8ce58ba0e1235
近来由于毕设需要,重新修改了新浪微博爬虫废了不少劲,希望下边的总结能够帮助后来的同学们。
现行版的模拟登陆与以前相比,最大的改动在于cookie获取时候的模拟url的请求
- synchronized
香水浓
javathread
Java语言的关键字,可用来给对象和方法或者代码块加锁,当它锁定一个方法或者一个代码块的时候,同一时刻最多只有一个线程执行这段代码。当两个并发线程访问同一个对象object中的这个加锁同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。然而,当一个线程访问object的一个加锁代码块时,另一个线程仍然
- maven 简单实用教程
AdyZhang
maven
1. Maven介绍 1.1. 简介 java编写的用于构建系统的自动化工具。目前版本是2.0.9,注意maven2和maven1有很大区别,阅读第三方文档时需要区分版本。 1.2. Maven资源 见官方网站;The 5 minute test,官方简易入门文档;Getting Started Tutorial,官方入门文档;Build Coo
- Android 通过 intent传值获得null
aijuans
android
我在通过intent 获得传递兑现过的时候报错,空指针,我是getMap方法进行传值,代码如下 1 2 3 4 5 6 7 8 9
public
void
getMap(View view){
Intent i =
- apache 做代理 报如下错误:The proxy server received an invalid response from an upstream
baalwolf
response
网站配置是apache+tomcat,tomcat没有报错,apache报错是:
The proxy server received an invalid response from an upstream server. The proxy server could not handle the request GET /. Reason: Error reading fr
- Tomcat6 内存和线程配置
BigBird2012
tomcat6
1、修改启动时内存参数、并指定JVM时区 (在windows server 2008 下时间少了8个小时)
在Tomcat上运行j2ee项目代码时,经常会出现内存溢出的情况,解决办法是在系统参数中增加系统参数:
window下, 在catalina.bat最前面
set JAVA_OPTS=-XX:PermSize=64M -XX:MaxPermSize=128m -Xms5
- Karam与TDD
bijian1013
KaramTDD
一.TDD
测试驱动开发(Test-Driven Development,TDD)是一种敏捷(AGILE)开发方法论,它把开发流程倒转了过来,在进行代码实现之前,首先保证编写测试用例,从而用测试来驱动开发(而不是把测试作为一项验证工具来使用)。
TDD的原则很简单:
a.只有当某个
- [Zookeeper学习笔记之七]Zookeeper源代码分析之Zookeeper.States
bit1129
zookeeper
public enum States {
CONNECTING, //Zookeeper服务器不可用,客户端处于尝试链接状态
ASSOCIATING, //???
CONNECTED, //链接建立,可以与Zookeeper服务器正常通信
CONNECTEDREADONLY, //处于只读状态的链接状态,只读模式可以在
- 【Scala十四】Scala核心八:闭包
bit1129
scala
Free variable A free variable of an expression is a variable that’s used inside the expression but not defined inside the expression. For instance, in the function literal expression (x: Int) => (x
- android发送json并解析返回json
ronin47
android
package com.http.test;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import
- 一份IT实习生的总结
brotherlamp
PHPphp资料php教程php培训php视频
今天突然发现在不知不觉中自己已经实习了 3 个月了,现在可能不算是真正意义上的实习吧,因为现在自己才大三,在这边撸代码的同时还要考虑到学校的功课跟期末考试。让我震惊的是,我完全想不到在这 3 个月里我到底学到了什么,这是一件多么悲催的事情啊。同时我对我应该 get 到什么新技能也很迷茫。所以今晚还是总结下把,让自己在接下来的实习生活有更加明确的方向。最后感谢工作室给我们几个人这个机会让我们提前出来
- 据说是2012年10月人人网校招的一道笔试题-给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 将重物放到天平左侧,问在两边如何添加砝码
bylijinnan
java
public class ScalesBalance {
/**
* 题目:
* 给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 (假设N无限大,但一种重量的砝码只有一个)
* 将重物放到天平左侧,问在两边如何添加砝码使两边平衡
*
* 分析:
* 三进制
* 我们约定括号表示里面的数是三进制,例如 47=(1202
- dom4j最常用最简单的方法
chiangfai
dom4j
要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:http://nchc.dl.sourceforge.net/sourceforge/dom4j/dom4j-1.6.1.zip
解开后有两个包,仅操作XML文档的话把dom4j-1.6.1.jar加入工程就可以了,如果需要使用XPath的话还需要
- 简单HBase笔记
chenchao051
hbase
一、Client-side write buffer 客户端缓存请求 描述:可以缓存客户端的请求,以此来减少RPC的次数,但是缓存只是被存在一个ArrayList中,所以多线程访问时不安全的。 可以使用getWriteBuffer()方法来取得客户端缓存中的数据。 默认关闭。 二、Scan的Caching 描述: next( )方法请求一行就要使用一次RPC,即使
- mysqldump导出时出现when doing LOCK TABLES
daizj
mysqlmysqdump导数据
执行 mysqldump -uxxx -pxxx -hxxx -Pxxxx database tablename > tablename.sql
导出表时,会报
mysqldump: Got error: 1044: Access denied for user 'xxx'@'xxx' to database 'xxx' when doing LOCK TABLES
解决
- CSS渲染原理
dcj3sjt126com
Web
从事Web前端开发的人都与CSS打交道很多,有的人也许不知道css是怎么去工作的,写出来的css浏览器是怎么样去解析的呢?当这个成为我们提高css水平的一个瓶颈时,是否应该多了解一下呢?
一、浏览器的发展与CSS
- 《阿甘正传》台词
dcj3sjt126com
Part Ⅰ:
《阿甘正传》Forrest Gump经典中英文对白
Forrest: Hello! My names Forrest. Forrest Gump. You wanna Chocolate? I could eat about a million and a half othese. My momma always said life was like a box ochocol
- Java处理JSON
dyy_gusi
json
Json在数据传输中很好用,原因是JSON 比 XML 更小、更快,更易解析。
在Java程序中,如何使用处理JSON,现在有很多工具可以处理,比较流行常用的是google的gson和alibaba的fastjson,具体使用如下:
1、读取json然后处理
class ReadJSON
{
public static void main(String[] args)
- win7下nginx和php的配置
geeksun
nginx
1. 安装包准备
nginx : 从nginx.org下载nginx-1.8.0.zip
php: 从php.net下载php-5.6.10-Win32-VC11-x64.zip, php是免安装文件。
RunHiddenConsole: 用于隐藏命令行窗口
2. 配置
# java用8080端口做应用服务器,nginx反向代理到这个端口即可
p
- 基于2.8版本redis配置文件中文解释
hongtoushizi
redis
转载自: http://wangwei007.blog.51cto.com/68019/1548167
在Redis中直接启动redis-server服务时, 采用的是默认的配置文件。采用redis-server xxx.conf 这样的方式可以按照指定的配置文件来运行Redis服务。下面是Redis2.8.9的配置文
- 第五章 常用Lua开发库3-模板渲染
jinnianshilongnian
nginxlua
动态web网页开发是Web开发中一个常见的场景,比如像京东商品详情页,其页面逻辑是非常复杂的,需要使用模板技术来实现。而Lua中也有许多模板引擎,如目前我在使用的lua-resty-template,可以渲染很复杂的页面,借助LuaJIT其性能也是可以接受的。
如果学习过JavaEE中的servlet和JSP的话,应该知道JSP模板最终会被翻译成Servlet来执行;而lua-r
- JZSearch大数据搜索引擎
颠覆者
JavaScript
系统简介:
大数据的特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。大数据搜索引
- 10招让你成为杰出的Java程序员
pda158
java编程框架
如果你是一个热衷于技术的
Java 程序员, 那么下面的 10 个要点可以让你在众多 Java 开发人员中脱颖而出。
1. 拥有扎实的基础和深刻理解 OO 原则 对于 Java 程序员,深刻理解 Object Oriented Programming(面向对象编程)这一概念是必须的。没有 OOPS 的坚实基础,就领会不了像 Java 这些面向对象编程语言
- tomcat之oracle连接池配置
小网客
oracle
tomcat版本7.0
配置oracle连接池方式:
修改tomcat的server.xml配置文件:
<GlobalNamingResources>
<Resource name="utermdatasource" auth="Container"
type="javax.sql.DataSou
- Oracle 分页算法汇总
vipbooks
oraclesql算法.net
这是我找到的一些关于Oracle分页的算法,大家那里还有没有其他好的算法没?我们大家一起分享一下!
-- Oracle 分页算法一
select * from (
select page.*,rownum rn from (select * from help) page
-- 20 = (currentPag