多目标粒子群(MOPSO)算法是由CarlosA. Coello Coello等人在2004年提出,目的是将原来只能用在单目标上的粒子群算法(PSO)应用于多目标上。
支配(Dominance ) :在多目标优化问题中,如果个体p至少有一个目标比个体q好,而且个体p的所有目标都不比q差;那么称个体p支配个体q
序值(Rank):如果p支配q,那么p的序值比q低;如果p和q互不支配,那么p和q有相同的序值
拥挤距离(Crowding Distance):表示个体之间的拥挤程度,测量相同序值个体之间的距离。
帕累托(Pareto):https://blog.csdn.net/m0_59838738/article/details/121588306
粒子群算法(PSO):承接我的博客
PSO:
MOPSO注:
结论:可以看出PSO和MOPSO的大框架一致,MOPSO只是根据多目标问题改进了PSO中的pbest和gbest的选取方法
与我的NSGA-II的博客的2.3拥挤距离类似,这里采用了网格法:
把目标空间用网格等分成小区域,以每个区域中包含的粒子数作为粒子的密度信息。粒子所在网格中包含的粒子数越多,其密度值越大,反之越小。
以二维目标空间最小化优化问题为例,密度信息估计算法的具体实现过程如下:
(1)假设我们现在得到一代种群粒子如下:
(2)根据输入的粒子坐标,可以确定每个维度的最大最小值,计算成坐标保存:即图示的两个黑点坐标
(3)划分格子,一般情况下我们会对边界进行一次膨胀,然后根据nGrid参数进行每个维度的等额划分:假设我们设置了参数nGrid = 3即每个维度划分3个网格
(4)存储格子信息,如上下界,格子编号等。然后根据粒子坐标即可统计格子内的粒子数。
下面展示ZDT1~4系列问题的求解代码
(1)文件目录:
(2)网格创建函数
function Grid = CreateGrid(pop, nGrid, alpha)
c = [pop.Cost];
%M = min(A,[],dim) 返回维度 dim 上的最小元素。例如,如果 A 为矩阵,则 min(A,[],2) 是包含每一行的最小值的列向量。
cmin = min(c, [], 2);
cmax = max(c, [], 2);
dc = cmax-cmin;
%网格边界外扩
cmin = cmin-alpha*dc;
cmax = cmax+alpha*dc;
nObj = size(c, 1);
%网格上下界
empty_grid.LB = [];
empty_grid.UB = [];
Grid = repmat(empty_grid, nObj, 1);
for j = 1:nObj
%y = linspace(x1,x2,n) 生成 n 个点。这些点的间距为 (x2-x1)/(n-1)。
cj = linspace(cmin(j), cmax(j), nGrid+1); % nGrid是设置好的参数
Grid(j).LB = [-inf cj];
Grid(j).UB = [cj +inf];
end
end
(3)支配计算函数1
function pop = DetermineDomination(pop)
nPop = numel(pop);
for i = 1:nPop
pop(i).IsDominated = false;
end
for i = 1:nPop-1
for j = i+1:nPop
% b = all(x <= y) && any(x
(4)支配计算函数2
function b = Dominates(x, y)
if isstruct(x)
x = x.Cost;
end
if isstruct(y)
y = y.Cost;
end
b = all(x <= y) && any(x
(5)网格查找函数,遍历粒子,统计网格
function particle = FindGridIndex(particle, Grid)
nObj = numel(particle.Cost);
nGrid = numel(Grid(1).LB);
particle.GridSubIndex = zeros(1, nObj);
for j = 1:nObj
particle.GridSubIndex(j) = ...
find(particle.Cost(j)
(6)轮盘选择函数
function i = RouletteWheelSelection(P)
r = rand;
C = cumsum(P);
i = find(r <= C, 1, 'first');
end
(7)gbest选择函数,选一个当全局最优
function leader = SelectLeader(rep, beta)
% Grid Index of All Repository Members
GI = [rep.GridIndex];
% Occupied Cells
OC = unique(GI);
% Number of Particles in Occupied Cells
N = zeros(size(OC));
for k = 1:numel(OC)
N(k) = numel(find(GI == OC(k)));
end
% Selection Probabilities
P = exp(-beta*N);
P = P/sum(P);
% Selected Cell Index 轮盘选择
sci = RouletteWheelSelection(P);
% Selected Cell
sc = OC(sci);
% Selected Cell Members
SCM = find(GI == sc);
% 网格里可能还有多个粒子 再随机选一个
% Selected Member Index
smi = randi([1 numel(SCM)]);
% Selected Member
sm = SCM(smi);
% Leader
leader = rep(sm);
end
(8)绘图函数
function PlotCosts(pop, rep)
pop_costs = [pop.Cost];
plot(pop_costs(1, :), pop_costs(2, :), 'ko');
hold on;
rep_costs = [rep.Cost];
plot(rep_costs(1, :), rep_costs(2, :), 'r*');
xlabel('1^{st} Objective');
ylabel('2^{nd} Objective');
grid on;
hold off;
end
(9)ZDT1~4
function z = ZDT1(x)
n = numel(x);
f1 = x(1);
g = 1+9/(n-1)*sum(x(2:end));
h = 1-sqrt(f1/g);
f2 = g*h;
z = [f1
f2];
end
function z = ZDT2(x)
n = numel(x);
f1 = x(1);
g = 1+9/(n-1)*sum(x(2:end));
h = 1-(f1/g)^2;
f2 = g*h;
z = [f1
f2];
end
function z = ZDT3(x)
n = numel(x);
f1 = x(1);
g = 1+9/(n-1)*sum(x(2:end));
%h = 1-(f1/g)^2; % ZDT2与3的不同之处
h = (1-(f1/g)^0.5-(f1/g)*sin(10*pi*f1));
f2 = g*h;
z = [f1
f2];
end
function z = ZDT4(x)
n = numel(x);
f1 = x(1);
sum=0;
for i=2:n
sum = sum+(x(i)^2-10*cos(4*pi*x(i)));
end
g = 1+9*10+sum;
h = (1-(f1/g)^0.5);
f2 = g*h;
z = [f1
f2];
end
(10)主函数
clc;
clear;
close all;
%% Problem Definition
CostFunction = @(x) ZDT3(x); % Cost Function
nVar = 5; % 5个决策变量
VarSize = [1 nVar]; % Size of Decision Variables Matrix
VarMin = 0; % Lower Bound of Variables
VarMax = 1; % Upper Bound of Variables
%% MOPSO Parameters
MaxIt = 200; % 迭代次数
nPop = 200; % 种群大小
nRep = 100; % 精英库
w = 0.5; % 惯性权重
wdamp = 0.99; % 惯性权重的衰减因子(阻尼)
c1 = 1; % 个体学习因子
c2 = 2; % 全局学习因子
nGrid = 7; % 每个维度的网格数
alpha = 0.1; % 膨胀率 网格边界外扩大小的因子
beta = 2; % Leader Selection Pressure
gamma = 2; % Deletion Selection Pressure
mu = 0.1; % 变异率
%% Initialization
empty_particle.Position = [];
empty_particle.Velocity = [];
empty_particle.Cost = [];
empty_particle.Best.Position = [];
empty_particle.Best.Cost = [];
empty_particle.IsDominated = [];
empty_particle.GridIndex = [];
empty_particle.GridSubIndex = [];
pop = repmat(empty_particle, nPop, 1);
for i = 1:nPop
pop(i).Position = unifrnd(VarMin, VarMax, VarSize);
pop(i).Velocity = zeros(VarSize);
pop(i).Cost = CostFunction(pop(i).Position); % CostFunction = @(x) ZDT(x); 适应度
% Update Personal Best
pop(i).Best.Position = pop(i).Position;
pop(i).Best.Cost = pop(i).Cost;
end
% 计算种群的支配情况
pop = DetermineDomination(pop);
% 取出没有被支配的pop元素,存放到rep
rep = pop(~[pop.IsDominated]);
% 根据粒子分布画出网格
Grid = CreateGrid(rep, nGrid, alpha);
% 根据粒子位置确定所处网格
for i = 1:numel(rep)
rep(i) = FindGridIndex(rep(i), Grid);
end
%% MOPSO Main Loop
for it = 1:MaxIt
for i = 1:nPop
gbest = SelectLeader(rep, beta);
pop(i).Velocity = w*pop(i).Velocity ...
+c1*rand(VarSize).*(pop(i).Best.Position-pop(i).Position) ...
+c2*rand(VarSize).*(gbest.Position-pop(i).Position);
pop(i).Position = pop(i).Position + pop(i).Velocity;
pop(i).Position = max(pop(i).Position, VarMin);
pop(i).Position = min(pop(i).Position, VarMax);
pop(i).Cost = CostFunction(pop(i).Position);
% 更新i粒子历史最优
if Dominates(pop(i), pop(i).Best)
pop(i).Best.Position = pop(i).Position;
pop(i).Best.Cost = pop(i).Cost;
elseif Dominates(pop(i).Best, pop(i))
% Do Nothing
else
if rand<0.5
pop(i).Best.Position = pop(i).Position;
pop(i).Best.Cost = pop(i).Cost;
end
end
end
% Add Non-Dominated Particles to REPOSITORY
% 把更新后的rank = 1的粒子再加到rep
rep = [rep
pop(~[pop.IsDominated])]; %#ok
% Determine Domination of New Resository Members
% 上一代的Non-Dominated粒子和当前代的粒子进行支配判断
rep = DetermineDomination(rep);
% Keep only Non-Dminated Memebrs in the Repository
rep = rep(~[rep.IsDominated]);
% Update Grid
Grid = CreateGrid(rep, nGrid, alpha);
% Update Grid Indices
for i = 1:numel(rep)
rep(i) = FindGridIndex(rep(i), Grid);
end
% Check if Repository is Full
if numel(rep)>nRep
Extra = numel(rep)-nRep;
for e = 1:Extra
% 轮盘删一个,类似选取pbest的流程
rep = DeleteOneRepMemebr(rep, gamma);
end
end
% Plot Costs
figure(1);
PlotCosts(pop, rep);
pause(0.01);
% Show Iteration Information
disp(['Iteration ' num2str(it) ': Number of Rep Members = ' num2str(numel(rep))]);
% Damping Inertia Weight
w = w*wdamp;
end
之前漏掉的函数DeleteOneRepMemebr【sorry】
function rep = DeleteOneRepMemebr(rep, gamma)
% Grid Index of All Repository Members
GI = [rep.GridIndex];
% Occupied Cells
OC = unique(GI);
% Number of Particles in Occupied Cells
N = zeros(size(OC));
for k = 1:numel(OC)
N(k) = numel(find(GI == OC(k)));
end
% Selection Probabilities
P = exp(gamma*N);
P = P/sum(P);
% Selected Cell Index
sci = RouletteWheelSelection(P);
% Selected Cell
sc = OC(sci);
% Selected Cell Members
SCM = find(GI == sc);
% Selected Member Index
smi = randi([1 numel(SCM)]);
% Selected Member
sm = SCM(smi);
% Delete Selected Member
rep(sm) = [];
end