- chatgpt赋能Python-python_pyomo
atest166
ChatGptpythonchatgpt开发语言
PythonPyomo:优化问题解决利器PythonPyomo是一个开源的Python优化建模语言工具箱。它提供了一种简单灵活的方法来描述优化问题,并在可行性、线性、非线性、混合整数和二次规划等方面提供广泛的建模和求解功能。优点灵活:Pyomo可以通过对象导向编程方式来描述优化问题,而无需使用特定的语法或格式。它提供了一种比传统表格方式更灵活的方式来表示问题。可扩展:Pyomo的建模框架可以很容易
- leetcode_链表 203.移除链表元素
MiyamiKK57
leetcode链表算法
203.移除链表元素给你一个链表的头节点head和一个整数val,请你删除链表中所有满足Node.val==val的节点,并返回新的头节点。#Definitionforsingly-linkedlist.#classListNode(object):#def__init__(self,val=0,next=None):#self.val=val#self.next=nextclassSolutio
- leetcode_链表 83.删除排序链表中的重复元素
MiyamiKK57
leetcode链表算法
83.删除排序链表中的重复元素给定一个已排序的链表的头head,删除所有重复的元素,使每个元素只出现一次。返回已排序的链表。#Definitionforsingly-linkedlist.#classListNode(object):#def__init__(self,val=0,next=None):#self.val=val#self.next=nextclassSolution(object
- 使用Python调用OpenCV中的solvePnP函数
WzisTypescript
pythonopencv开发语言OpenCV
OpenCV是一个广泛使用的计算机视觉库,它提供了许多用于处理图像和视频的功能。其中一个重要的功能是解决透视投影问题,也就是通过已知的3D点和对应的2D图像点来计算相机的位姿。在OpenCV中,solvePnP函数就是用于解决这个问题的。solvePnP函数使用了一种称为Perspective-n-Point(PnP)问题的算法,它可以估计相机的旋转和平移向量,从而确定相机在3D空间中的位置。这对
- 影视制作的未来:云渲染+虚拟制作+AI生成技术
LhcyyVSO
AIGC云渲染影视动画人工智能3d云渲染渲染农场AIAICG虚拟制作
在计算机技术和人工智能技术飞速发展的2024年,影视制作正在经历一场前所未有的变革。云渲染、虚拟制作和AI生成等新影视制作技术的结合,正在重新定义数字内容的创作流程,为影视产业带来了全新的可能性和机遇。这些前沿技术不仅提高了制作效率,还打开了无限的创作空间,有望引领未来的影视制作走向新的高峰。云渲染:加速创意实现影视的后期特效制作阶段需要大量的计算机参与渲染。传统的渲染过程耗时长且成本高,而云渲染
- 【ESP32】ESP-IDF开发 | UART通用异步收发传输器+串口收发例程
马浩同学
ESP32单片机嵌入式硬件c语言mcu
1.简介UART可以说是开发者使用得最多的外设之一了,打印log几乎都是使用串口来实现的。UART是一种异步全双工的通信方式,异步传输的特性使得它仅需2根线就可以完成全双工的传输,但这也要求发送端和接收端的速率、停止位、奇偶校验位等都要相同,通信才能成功。一个典型的UART帧开始于一个起始位,紧接着是有效数据,然后是奇偶校验位(可有可无),最后是停止位。ESP32上的UART控制器支持多种字符长度
- 智能工厂的设计软件 应用场景的一个例子:为AI聊天工具添加一个知识系统 之12 方案再探之3:特定于领域的模板 之2 首次尝试和遗留问题解决
一水鉴天
软件智能智能制造人工语言人工智能
本文提要现在就剩下“体”本身的约定了--这必然是自律自省的,或者称为“戒律”--即“体”的自我训导discipline。完整表述为:严格双相的庄严“相”(侧),完全双性的本质“性”(侧)和双侧side双面face的外观“体”(自身)。通过Class(),Type()和Method()的声明来确保结构化最终能形式化(终结符号),以及形式化最初能结构化(初始断言)。在文档中相关的描述:两种描述文件下面
- 【练习】PAT 乙 1024 科学计数法
柠石榴
PAT题解输入输出c++开发语言字符串
题目科学计数法是科学家用来表示很大或很小的数字的一种方便的方法,其满足正则表达式[±][1-9]”.”[0-9]+E[±][0-9]+,即数字的整数部分只有1位,小数部分至少有1位,该数字及其指数部分的正负号即使对正数也必定明确给出。现以科学计数法的格式给出实数A,请编写程序按普通数字表示法输出A,并保证所有有效位都被保留。输入格式每个输入包含1个测试用例,即一个以科学计数法表示的实数A。该数字的
- 打造你的聊天助手:使用C#、OpenAI和Spectre.Console创建控制台ChatGPT客户端
墨夶
C#学习资料1c#chatgpt开发语言
打造你的聊天助手:使用C#、OpenAI和Spectre.Console创建控制台ChatGPT客户端在这个人工智能飞速发展的时代,ChatGPT以其卓越的对话能力和智能回答在聊天领域引起了革命。你是否想过将这种能力融入到你的控制台应用中,让命令行界面也能拥有智能对话的体验?本文将带你一步步使用C#、OpenAI的API和Spectre.Console库,创建一个功能强大的控制台ChatGPT客户
- Microchip 系列:SAM L 系列 (基于 ARM Cortex-M0+)_(7).外设驱动开发
kkchenkx
单片机开发arm开发驱动开发架构java数据库嵌入式硬件
外设驱动开发在外设驱动开发中,我们将详细介绍如何使用Microchip的SAML系列单片机(基于ARMCortex-M0+)来开发各种外设驱动程序。这部分内容将涵盖常见的外设,如GPIO、UART、SPI、I2C、ADC和DAC等,并提供具体的代码示例和操作步骤。GPIO驱动开发GPIO引脚配置GPIO(GeneralPurposeInput/Output)是单片机中最基本的外设之一。通过配置GP
- Microchip 系列:SAM L 系列 (基于 ARM Cortex-M0+)_(10).SPI通信接口开发
kkchenkx
单片机开发arm开发数据库嵌入式硬件单片机物联网
SPI通信接口开发1.SPI通信接口概述1.1什么是SPISPI(SerialPeripheralInterface)是一种同步串行通信接口,主要用于短距离通信,通常在主设备和从设备之间进行数据交换。SPI接口通常包括四条线:MOSI(MasterOutSlaveIn)、MISO(MasterInSlaveOut)、SCK(SerialClock)和SS/CS(SlaveSelect/ChipSe
- 【用Java学习数据结构系列】初识泛型
Gu Gu Study
【用Java学习数据结构系列】java数据结构机器学习人工智能
看到这句话的时候证明:此刻你我都在努力加油陌生人br/>个人主页:GuGuStudy专栏:用Java学习数据结构系列喜欢的一句话:常常会回顾努力的自己,所以要为自己的努力留下足迹喜欢的话可以点个赞谢谢了。作者:小闭前言好久没有更新文章了,大概断更了20天,想着今天就写一下文章吧!最近也是又温习了一下数据结构,其实之前我写过关于数据结构的一个专栏那个专栏是写了顺序表,链表,栈和队列,但是那时是用C语
- 软件测试中的AI-为什么它在软件自动化测试中很重要?
测试界霄霄
软件测试人工智能功能测试自动化测试软件测试程序人生职场和发展
通俗地说,人工智能(AI)是计算机科学的一个领域,它专注于使机器“智能化”。所谓智能,就是使系统能够像人类一样学习和做出决策。因此,人工智能机器将能够学习如何在特定情况下做出反应,然后根据其学习情况在未来场景中做出决策。人工智能(AI)在大多数领域的应用仍处于早期阶段,想要完美运行还需要很长时间。今天的人工智能(AI)技术可以帮助我们完成许多不需要复杂思考的重复性日常任务。接下来,让我们讨论软件测
- 两种交换排序算法--冒泡,快速
juechen333
课程学习记录排序算法算法数据结构冒泡排序快速排序
目录1.冒泡排序原理2.快速排序原理3.冒泡代码实现4.快速排序代码实现1.冒泡排序原理冒泡排序(BubbleSort)是一种简单的排序算法,基本思想是通过反复交换相邻的元素,直到整个序列有序。它的名字来源于较大的元素像气泡一样“浮”到序列的顶部。原理:初始状态:我们从数组的第一个元素开始,比较相邻的两个元素。如果第一个元素大于第二个元素,就交换它们的位置;如果不大,则继续比较下一对元素。第一轮排
- <sa8650>QCX Usecase 使用详解—高通下一代camera< QCX >架构
waterAdmin
车载系统视觉检测c++c语言架构
<sa8650>QCXUsecase使用详解—高通下一代camera架构一、QualcommCameraNext(QCX)architecture1.1ClientApplication:1.2ClientManager:1.3QCarCamAPI:1.4StreamManager:1.5CamXLib/Component:1.6CHIcustomizations:1.7CamXCorelib:1
- 单片机内存管理剖析
jiuri_1215
MCU开发单片机嵌入式硬件
一、概述在单片机系统中,内存资源通常是有限的,因此高效的内存管理至关重要。合理地分配和使用内存可以提高系统的性能和稳定性,避免内存泄漏和碎片化问题。单片机的内存主要包括程序存储器(如Flash)和数据存储器(如RAM),其中数据存储器又可进一步分为静态数据区、栈区和堆区。动态内存分配主要发生在堆区,而sbrk、malloc和free这三个函数在堆内存管理中起着关键作用。二、sbrk:底层的内存边界
- 【AI论文】FilmAgent: 一个用于虚拟3D空间中端到端电影制作自动化的多智能体框架
东临碣石82
自动化运维
摘要:虚拟电影制作涉及复杂的决策过程,包括剧本编写、虚拟摄影以及演员的精确定位和动作设计。受近期基于语言智能体社会的自动化决策领域进展的启发,本文提出了FilmAgent,这是一个新颖的、基于大型语言模型(LLM)的多智能体协作框架,旨在实现我们构建的3D虚拟空间中的端到端电影制作自动化。FilmAgent模拟了各种剧组成员角色,包括导演、编剧、演员和摄影师,并涵盖了电影制作工作流程的关键阶段:(
- BlueZone:实现六边形架构的停车支付应用
樊思露Roger
BlueZone:实现六边形架构的停车支付应用bluezoneAnexampleapplicationimplementingHexagonalArchitecture项目地址:https://gitcode.com/gh_mirrors/blu/bluezone项目介绍BlueZone是一个基于六边形架构(HexagonalArchitecture)的示例应用,旨在为城市中的汽车驾驶员提供远程停
- 一篇带你搞懂 为什么Vue3比Vue2效率更高!
一朵好运莲
前端javascriptvue.jshtml5css前端框架
众所周知,vue3比vue2效率有很大的提升,渲染效率提升了1.3~2倍,SSR效率提升了2~3倍。那么vue3是如何提升效率的呢?目录一、静态提升二、预字符串化三、缓存事件处理函数四、BlockTree五、PatchFlag一、静态提升Vue3中的静态提升(StaticTreeHoisting)是一种编译阶段的优化技术,它能够提高组件的渲染性能。具体来说,静态提升通过以下方式工作:1、提升静态节
- 最小二乘法-线性回归 和 梯度下降法
梦回楼~
最小二乘法算法机器学习人工智能
最小二乘法一、最小二乘法概念以及应用 最小二乘法(LeastSquaresMethod,LSE)是一种数学优化技术,主要用于寻找最佳拟合给定数据点的函数。它通过最小化观测值与模型预测值之间的差的平方和来估计模型参数。 换成听得懂的话说就是,我们有一组数据(x1,y1),(x2,y2)…(xn,yn),我们也知道他的数学表达式的形式例如y=kx+b(但是不知道k、b的具体值),但是(xn,yn)
- 容器化检索增强框架(R2R)
deepdata_cn
RAGRAG
R2RbySciPhi-AI是一个专门的RAG框架,专注于通过迭代细化来改进检索过程。主要特点包括实现新颖的检索算法,支持多步检索过程,与各种嵌入模型和向量存储集成,以及用于分析和可视化检索性能的工具。适合有兴趣突破检索技术界限的开发人员和研究人员,特别是在需要创新检索方法的场景。具有RESTfulAPI的容器化检索增强一代(RAG)。具有生产就绪型功能,包括多模式内容摄取、混合搜索功能、可配置的
- GitLab/GitHub上传项目时忽略文件规则
满眼清香
#Git#Windows操作系统gitWindows
平时使用idea或者eclipse时总会有一些自动生成的文件,比如日志文件、编译文件,但是项目上传的时候这些文件是不需要的,而且浪费空间导致项目非常大,所以这些没有用的文件上传的时候需要通过.ignore过滤掉,接下来说一下过滤规则。git对于.ignore配置文件是按行从上到下进行规则匹配的,意味着如果前面的规则匹配的范围更大,则后面的规则将不会生效;以斜杠“/”开头表示目录;以星号“*”通配多
- 高效向量搜索RAG解决方案(Canopy)
deepdata_cn
RAGRAG
Canopy利用Pinecone在高效向量搜索方面的专业知识,提供强大且可扩展的RAG(Retrieval-AugmentedGeneration)解决方案。包括与Pinecone向量数据库的紧密集成,支持流处理和实时更新,先进的查询处理和重新排序功能,以及管理知识库和版本控制的工具。一、基本原理1.向量嵌入:Canopy首先会将文本数据转换为向量表示,通常使用预训练的语言模型等技术,将文本映射到
- R语言数据分析基础(一)- 使用R语言读取Excel
司南锤
R语言excelr语言
在R中,读取和操作Excel文件最常用的readxl包,可以读取Excel文件,writexl包可以写入Excel文件。以下是常见的操作:安装和加载包首先,需要安装和加载readxl和writexl包。install.packages("readxl")install.packages("writexl")library(readxl)library(writexl)读取Excel文件使用read
- 使用小尺寸的图像进行逐像素语义分割训练,出现样本不均衡训练效果问题
司南锤
深度学习遥感计算机视觉人工智能机器学习
在使用小尺寸图像进行逐像素语义分割训练时,确实可能出现样本不均衡问题,且这种问题可能比大尺寸图像更显著。1.小尺寸图像如何加剧样本不均衡?(1)局部裁剪导致类别分布偏差问题:遥感图像中某些类别(如道路、建筑)可能稀疏分布。小尺寸裁剪后,部分训练样本可能完全不含某些类别(例如一块纯农田的补丁),导致模型对这些类别缺乏学习机会。示例:原图中“道路”占比5%,若裁剪为256x256的小图,部分小图中可能
- 如何解决小尺寸图像分割中的样本不均衡问题
司南锤
深度学习遥感笔记深度学习
1.生成对抗数据增强(Copy-PasteAugmentation)原理:将稀有目标的像素块复制粘贴到其他图像中,低成本生成平衡数据。适用场景:小目标(如车辆、船只)或极端稀疏类别(如灾害损毁区域)。PyTorch实现:importrandomdefcopy_paste_augment(image,mask,paste_image,paste_mask):#从粘贴数据中随机选择一个目标实例obj_
- 读书笔记--分布式服务架构对比及优势
一望无际的大草原
读书笔记服务中心后端读书笔记分布式架构共享服务
本篇是在上一篇的基础上,主要对共享服务平台建设所依赖的分布式服务架构进行学习,主要记录和思考如下,供大家学习参考。随着企业各业务数字化转型工作的推进,之前在传统的单一系统(或单体应用)模式中,每个系统都要做这些公共的功能或模块,比如用户管理,权限认证,日志,邮件,财务等等,随着企业各大应用系统的不断扩展,各垂直业务板块逐步沉淀形成各自的核心业务的数字化能力,提出了基于SOA理念的分布式服务架构,S
- 06-机器学习-数据预处理
不会打代码呜呜呜呜
机器学习机器学习人工智能
数据清洗数据清洗是数据预处理的核心步骤,旨在修正或移除数据集中的错误、不完整、重复或不一致的部分,为后续分析和建模提供可靠基础。以下是数据清洗的详细流程、方法和实战示例:一、数据清洗的核心任务问题类型表现示例影响缺失值数值型字段为空(NaN)模型无法处理缺失值,导致训练中断或偏差异常值年龄=200岁,房价=-100万扭曲统计指标(如均值),降低模型泛化性重复数据两行记录完全相同导致模型过拟合,降低
- libaom threads线程配置
fantasy_arch
视频编解码av1
一参数配置parse_stream_params}elseif(arg_match(&arg,&g_av1_codec_arg_defs.threads,argi)){config->cfg.g_threads=arg_parse_uint(&arg);二使用线程个数参数g_threadsintav1_compute_num_fp_contexts(AV1_PRIMARY*ppi,AV1Encod
- 日志收集Day008
ccnnlxc
java开发语言
1.zk集群优化修改zookeeper的堆内存大小,一般情况下,生产环境给到2G足以,如果规模较大可以适当调大到4G。(1)配置ZK的堆内存vim/app/softwares/zk/conf/java.envexportJAVA_HOME=/sortwares/jdk1.8.0_291exportJVMFLAGS="-Xms256m-Xmx256m$JVMFLAGS"EOF(2)同步文件到其他节点
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><