matlab 批量处理梯形变形

file_path = 'F:\\test\';% 图像文件夹路径

img_path_list = dir(strcat(file_path,'*.png'));%获取该文件夹中所有.jpg格式的图像

img_num = length(img_path_list);%获取图像总数

if img_num > 0 %有满足条件的图像

for pn = 1:img_num %逐一读取图像

            image_name = img_path_list(pn).name;% 图像名

            img_origin =  imread(strcat(file_path,image_name));%读取图像

            fprintf('%d %s\n',pn,strcat(file_path,image_name));% 显示正在处理的图像名

            S = distortion002(imread(strcat(file_path,image_name)));

            imwrite(S,image_name);

%%此处添加具体的图像处理程序

end

end

function I = distortion002(Idistorted)

%clear;

A =[639  0  320.5; 

    0    399 200.5; 

    0    0  1]; 

fx = A(1,1); 

fy = A(2,2); 

cx = A(1,3); 

cy = A(2,3); 


K = A; 

%Idistorted = imread('4946978_left.png'); 

%Idistorted = rgb2gray(Idistorted); 

Idistorted = im2double(Idistorted); 

I = zeros(size(Idistorted)); 

[i ,j] = find(~isnan(I)); 


% Xp = the xyz vals of points on the z plane 

Xp = (K)\[j i ones(length(i),1)]'; 


% Now we calculate how those points distort i.e forward map them through the distortion 

%r2 = Xp(1,:).^2+Xp(2,:).^2; 

x = Xp(1,:); 

y = Xp(2,:); 

theta = deg2rad(12.5);%X轴旋转角度

focal = 446 ;  %相机内参,焦距

Ph = 400 ;      %相机内参,画幅height

alpha = atan(2*focal/Ph);

beta = alpha - theta;

h2 = sin(alpha)*Ph/sin(beta);

deltaS = sin(theta)*Ph/sin(beta);

S = (Ph/2)/cos(alpha);

aa = (S+deltaS)/S;

x1=zeros(400,1);

for m=1:400

x1(m,1)=(m-1)/399;

end

t=aa-1;

for m=  1  :  400  %列1-21,x - →  竖线

for n=  1  :  640    %hang 1-21,x + ←

x(400*(n-1)+m)=x(400*(n-1)+m)/(1+t*x1(m)) ;

end

end

bb=h2/Ph;

y=y/bb;%y方向缩放

%x = x.*(1+k1*r2 + k2*r2.^2 + k3*r2.^3) + 2*p1.*x.*y + p2*(r2 + 2*x.^2); 

%y = y.*(1+k1*r2 + k2*r2.^2 + k3*r2.^3) + 2*p2.*x.*y + p1*(r2 + 2*y.^2); 


% u and v are now the distorted cooridnates 

u = reshape(fx*x + cx,size(I)); 

v = reshape(fy*y + cy,size(I)); 

% Now we perform a backward mapping in order to undistort the warped image coordinates 

I = interp2(Idistorted, u, v); 

subplot(121); imshow(Idistorted); 

subplot(122); imshow(I);

%imwrite(I,'I001.png');

end

你可能感兴趣的:(matlab 批量处理梯形变形)