参考自:http://blog.csdn.net/koriya/article/details/3347365
#ifdef _CH_ #pragma package <opencv> #endif #define CV_NO_BACKWARD_COMPATIBILITY #ifndef _EiC #include "cv.h" #include "highgui.h" #include <stdio.h> #include <ctype.h> #endif //用HSV中的Hue分量进行跟踪 IplImage *image = 0, *hsv = 0, *hue = 0, *mask = 0, *backproject = 0, *histimg = 0; CvHistogram *hist = 0; //直方图类 int backproject_mode = 0; int select_object = 0; int track_object = 0; int show_hist = 1; CvPoint origin; CvRect selection; CvRect track_window; CvBox2D track_box; //Meanshift跟踪算法返回的Box类 CvConnectedComp track_comp; int hdims = 16; //划分直方图bins的个数,越多越精确 float hranges_arr[] = {0,180}; //像素值的范围 float* hranges = hranges_arr; //用于初始化CvHistogram类 int vmin = 10, vmax = 256, smin = 30; void on_mouse( int event, int x, int y, int flags, void* param ) //该函数用于选择跟踪目标 { if( !image ) return; if( image->origin ) y = image->height - y; if( select_object ) //如果处于选择跟踪物体阶段,则对selection用当前的鼠标位置进行设置 { selection.x = MIN(x,origin.x); selection.y = MIN(y,origin.y); selection.width = selection.x + CV_IABS(x - origin.x); selection.height = selection.y + CV_IABS(y - origin.y); selection.x = MAX( selection.x, 0 ); selection.y = MAX( selection.y, 0 ); selection.width = MIN( selection.width, image->width ); selection.height = MIN( selection.height, image->height ); selection.width -= selection.x; selection.height -= selection.y; } switch( event ) { case CV_EVENT_LBUTTONDOWN: //开始点击选择跟踪物体 origin = cvPoint(x,y); selection = cvRect(x,y,0,0); //坐标 select_object = 1; //表明开始进行选取 break; case CV_EVENT_LBUTTONUP: select_object = 0; //选取完成 if( selection.width > 0 && selection.height > 0 ) track_object = -1; //如果选择物体有效,则打开跟踪功能 break; } } CvScalar hsv2rgb( float hue ) //用于将Hue量转换成RGB量 { int rgb[3], p, sector; static const int sector_data[][3]= {{0,2,1}, {1,2,0}, {1,0,2}, {2,0,1}, {2,1,0}, {0,1,2}}; hue *= 0.033333333333333333333333333333333f; sector = cvFloor(hue); p = cvRound(255*(hue - sector)); p ^= sector & 1 ? 255 : 0; rgb[sector_data[sector][0]] = 255; rgb[sector_data[sector][1]] = 0; rgb[sector_data[sector][2]] = p; return cvScalar(rgb[2], rgb[1], rgb[0],0); //返回对应的颜色值 } int main( int argc, char** argv ) { CvCapture* capture = 0; if( argc == 1 || (argc == 2 && strlen(argv[1]) == 1 && isdigit(argv[1][0]))) capture = cvCaptureFromCAM( argc == 2 ? argv[1][0] - '0' : 0 );//打开摄像头 else if( argc == 2 ) capture = cvCaptureFromAVI( argv[1] ); //打开AVI文件 if( !capture ) //打开视频流失败处理 { fprintf(stderr,"Could not initialize capturing...\n"); return -1; } //打印出程序功能列表 printf( "Hot keys: \n" "\tESC - quit the program\n" "\tc - stop the tracking\n" "\tb - switch to/from backprojection view\n" "\th - show/hide object histogram\n" "To initialize tracking, select the object with mouse\n" ); cvNamedWindow( "Histogram", 1 ); cvNamedWindow( "CamShiftDemo", 1 ); cvSetMouseCallback( "CamShiftDemo", on_mouse, 0 ); // 设置鼠标回调函数 cvCreateTrackbar( "Vmin", "CamShiftDemo", &vmin, 256, 0 );//建立滑动条 cvCreateTrackbar( "Vmax", "CamShiftDemo", &vmax, 256, 0 ); cvCreateTrackbar( "Smin", "CamShiftDemo", &smin, 256, 0 ); for(;;) //进入视频帧处理主循环 { IplImage* frame = 0; int i, bin_w, c; frame = cvQueryFrame( capture ); if( !frame ) break; if( !image ) //刚开始先建立一些缓冲区 { /* allocate all the buffers */ image = cvCreateImage( cvGetSize(frame), 8, 3 ); image->origin = frame->origin; hsv = cvCreateImage( cvGetSize(frame), 8, 3 ); hue = cvCreateImage( cvGetSize(frame), 8, 1 ); mask = cvCreateImage( cvGetSize(frame), 8, 1 ); //分配掩膜图像空间 backproject = cvCreateImage( cvGetSize(frame), 8, 1 );//分配反向投影图空间,大小一样,单通道 hist = cvCreateHist( 1, &hdims, CV_HIST_ARRAY, &hranges, 1 ); //分配建立直方图空间 histimg = cvCreateImage( cvSize(320,200), 8, 3 ); //分配用于画直方图的空间 cvZero( histimg ); //背景为黑色 } cvCopy( frame, image, 0 ); cvCvtColor( image, hsv, CV_BGR2HSV ); // 把图像从RGB表色系转为HSV表色系 if( track_object ) // 如果当前有需要跟踪的物体 { int _vmin = vmin, _vmax = vmax; //掩膜板,只处理像素值为H:0~180,S:smin~256,V:vmin~vmax之间的部分 cvInRangeS( hsv, cvScalar(0,smin,MIN(_vmin,_vmax),0), cvScalar(180,256,MAX(_vmin,_vmax),0), mask ); cvSplit( hsv, hue, 0, 0, 0 ); // 取得H分量 if( track_object < 0 ) //如果需要跟踪的物体还没有进行属性提取,则进行选取框类的图像属性提取 { float max_val = 0.f; cvSetImageROI( hue, selection ); // 设置原选择框 cvSetImageROI( mask, selection ); // 设置Mask的选择框 cvCalcHist( &hue, hist, 0, mask );// 得到选择框内且满足掩膜板内的直方图 cvGetMinMaxHistValue( hist, 0, &max_val, 0, 0 ); cvConvertScale( hist->bins, hist->bins, max_val ? 255. / max_val : 0., 0 ); // 对直方图转为0~255 cvResetImageROI( hue ); // remove ROI cvResetImageROI( mask ); track_window = selection; track_object = 1; cvZero( histimg ); bin_w = histimg->width / hdims; for( i = 0; i < hdims; i++ ) //画直方图到图像空间 { int val = cvRound( cvGetReal1D(hist->bins,i)*histimg->height/255 ); CvScalar color = hsv2rgb(i*180.f/hdims); cvRectangle( histimg, cvPoint(i*bin_w,histimg->height), cvPoint((i+1)*bin_w,histimg->height - val), color, -1, 8, 0 ); } } cvCalcBackProject( &hue, backproject, hist ); // 得到hue的反向投影图 cvAnd( backproject, mask, backproject, 0 ); // 得到反向投影图mask内的内容 cvCamShift( backproject, track_window, cvTermCriteria( CV_TERMCRIT_EPS | CV_TERMCRIT_ITER, 10, 1 ), &track_comp, &track_box ); //使用MeanShift算法对backproject中的内容进行搜索,返回跟踪结果 track_window = track_comp.rect; //得到跟踪结果的矩形框 if( backproject_mode ) cvCvtColor( backproject, image, CV_GRAY2BGR ); // 显示模式 if( !image->origin ) track_box.angle = -track_box.angle; cvEllipseBox( image, track_box, CV_RGB(255,0,0), 3, CV_AA, 0 ); //画出跟踪结果的位置 } if( select_object && selection.width > 0 && selection.height > 0 ) //如果正处于物体选择,画出选择框 { cvSetImageROI( image, selection ); cvXorS( image, cvScalarAll(255), image, 0 ); cvResetImageROI( image ); } cvShowImage( "CamShiftDemo", image ); //显示视频和直方图 cvShowImage( "Histogram", histimg ); c = cvWaitKey(10); if( (char) c == 27 ) break; switch( (char) c ) { case 'b': backproject_mode ^= 1; break; case 'c': track_object = 0; cvZero( histimg ); break; case 'h': show_hist ^= 1; if( !show_hist ) cvDestroyWindow( "Histogram" ); else cvNamedWindow( "Histogram", 1 ); break; default: ; } } cvReleaseCapture( &capture ); cvDestroyWindow("CamShiftDemo"); return 0; } #ifdef _EiC main(1,"camshiftdemo.c"); #endif