- DeepSeek:技术创作者的内容革命,从代码到爆文的AI全栈攻略
不想加班的码小牛
人工智能aichatgpt
一、为什么技术创作者需要关注DeepSeek?作为CSDN的资深用户,你是否经历过这些痛点?选题焦虑:技术热点日新月异,如何抓住「大模型优化」或「量子计算落地」等前沿方向?写作卡顿:明明代码跑通了,却在技术原理描述环节反复修改效率瓶颈:既要写技术文档又要运营专栏,时间永远不够用DeepSeek的多模态理解能力(支持代码+自然语言混合输入)和领域自适应特性(自动识别技术文档/教程/测评等文体),让它
- SDN架构解密:控制面如何“指挥”万亿级网络? ——基于“大脑-四肢”模型的三层架构深度解析
不想加班的码小牛
网络架构人工智能ai
摘要本文以“大脑-四肢”类比SDN三层架构,揭示控制器如何通过全局视图管理、南向接口标准化(如OpenFlow)与北向API开放能力,实现对万亿级网络的集中化控制。文中包含OpenFlow协议代码示例、网络拓扑公式及架构图,力求呈现技术细节与实战价值。一、SDN架构的“大脑-四肢”隐喻SDN通过控制平面-数据平面-应用平面的三层架构,构建了网络控制的“中枢神经系统”:控制层(大脑):集中式控制器掌
- NPU的应用场景:从云端到边缘
绿算技术
NPU架构介绍缓存人工智能科技深度学习
NPU的应用场景非常广泛,主要包括以下几个方面:1.云计算与数据中心AI推理服务:在云端提供高效的AI推理服务,例如图像识别、语音识别。模型训练加速:在大规模训练任务中,NPU可以作为加速单元,提升训练效率。2.边缘计算智能摄像头:在安防监控中,NPU可以实时处理视频流,实现目标检测和跟踪。智能音箱:在语音助手中,NPU可以加速语音识别和自然语言处理任务。3.自动驾驶实时感知:NPU可以加速自动驾
- NPU的工作原理:神经网络计算的流水线
绿算技术
NPU架构介绍神经网络人工智能深度学习
NPU的工作原理可以概括为以下几个步骤:1.模型加载·将训练好的神经网络模型加载到NPU的内存中。2.数据输入·输入数据(如图像、语音)通过接口传输到NPU。3.计算执行·NPU根据模型结构,依次执行卷积、池化、全连接等计算任务。·矩阵乘法单元和卷积加速器并行工作,高效完成计算。4.结果输出·计算完成后,输出结果(如分类标签、检测框)返回给主机或其他处理器。5.任务调度·在多任务场景下,NPU的任
- GPU的优势:并行计算的利器
绿算技术
GPU架构介绍科技gpu算力
GPU相较于CPU,在并行计算方面具有以下优势:强大的并行计算能力:GPU拥有成千上万个计算核心,能够同时执行大量的线程,非常适合处理数据并行性高的任务。高内存带宽:GPU配备了高带宽的内存子系统,能够快速地将数据传输到计算核心,满足大规模数据处理的需求。高效的线程调度:GPU采用硬件多线程技术,能够快速地切换线程上下文,最大限度地提高计算资源的利用率。灵活的编程模型:GPU提供了丰富的编程模型和
- LINUX下的tcp协议
Ccc030.
linuxtcp/ip运维
TCP1.面向数据流(流式套接字)2.建立连接3.安全可靠的传输协议应用场景:HTTP,MQTT,FTP三次握手:TCP建立连接时,需要进行三次握手,确保收发数据前,双方都已准备就绪。四次挥手:TCP断开连接时,需要进行四次挥手,从而确保通信双发都已收发数据结束。C/S模型:ssize_trecv(intsockfd,void*buf,size_tlen,intflags);功能:从tcp套接字接
- 警惕!Ollama大模型工具的安全风险及应对策略
码事漫谈
AI安全
文章目录**Ollama的安全隐患:不容忽视的风险****未授权访问:门户洞开的风险****数据泄露:敏感信息的外泄****漏洞利用:历史遗留的隐患****安全加固:守护数据与服务的防线****限制监听范围:内网隔离的保护****配置防火墙规则:双向过滤的防御****实施多层认证与访问控制:密钥与白名单的双重保障****禁用危险操作接口:限制权限的策略****修复历史漏洞:及时更新的重要性****
- 孪生网络模型,当训练集与测试集共用一个数据集时,训练准确率为100%,而测试准确率仍在50%左右浮动
bug菌¹
全栈Bug调优(实战版)pytorch机器学习
本文收录于《全栈Bug调优(实战版)》专栏,主要记录项目实战过程中所遇到的Bug或因后果及提供真实有效的解决方案,希望能够助你一臂之力,帮你早日登顶实现财富自由;同时,欢迎大家关注&&收藏&&订阅!持续更新中,up!up!up!!问题描述【问题】孪生网络模型,测试效果异常:当训练集与测试集共用一个数据集(样本、标签完全相同)时,训练准确率为100%,而测试准确率仍在50%左右浮动(正常来说测试的都
- 必看!一文读懂知识蒸馏技术
小天才学习机打游戏
人工智能知识图谱神经网络langchainwindows
导读最近,DeepSeek的爆火让大家对人工智能领域的技术发展又有了新的关注。而知识蒸馏作为深度学习中一项重要的技术,也在背后默默地发挥着作用,今天就来给大家详细介绍一下知识蒸馏及其相关原理。1.知识蒸馏是什么在深度学习领域,大型模型(如DeepSeek)通常具有强大的性能,但它们的计算量和参数量都非常庞大,这使得它们难以在资源受限的设备(如移动设备或嵌入式设备)上部署。例如,GPT-3在570G
- 从零开始大模型开发与微调:PyTorch 2.0深度学习环境搭建
AI智能涌现深度研究
DeepSeekR1&大数据AI人工智能Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
从零开始大模型开发与微调:PyTorch2.0深度学习环境搭建作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着深度学习在各个领域的广泛应用,大模型开发与微调成为了当前研究的热点。大模型能够学习到丰富的知识,并在各个下游任务上取得优异的性能。然而,大模型开发与微调需要强大的计算资源和专业的知识背景,这对于许多初学者和研究
- 数组中最长递增子序列问题的深入研究
cloudman08
算法
目录摘要一、引言二、问题定义三、问题分析3.1暴力枚举法的困境3.2动态规划的应用3.3二分查找优化四、算法设计4.1动态规划算法4.2二分查找优化算法4.3代码实现(Python)4.4代码解释五、复杂度分析5.1动态规划算法复杂度5.2二分查找优化算法复杂度六、实际应用6.1数据分析6.2生物信息学6.3信号处理七、结论摘要在数组处理的算法领域,寻找最长递增子序列是一个经典且具有广泛应用的问题
- Langchain如何调用Siliconflow的模型
LJY_LU
langchainpython开发语言AIGC人工智能数据挖掘nlp
硅基流动之前宣布了部分模型免费,那我们就可以调用API来搞些事情。官网(ChatCompletions(siliconflow.cn))上给出了详细的调用方式,我们可以方便的ctrlC和ctrlV而Langchain支持自定义封装LLM(CustomLLM|️Langchain)那我们就可以结合搞点事情,封装好的代码在这,需要自取:fromlangchain.llms.baseimportLLMf
- 【Java网络编程】OSI七层网络模型与TCP/IP协议簇
xiaoli8748_软件开发
网络通信网络tcp/ip网络协议
1.1、OSI七层网络模型OSI七层网络模型中,每层的功能如下:应用层:人与计算机网络交互的窗口。表示层:负责数据格式的封装,如加密、压缩、编解码等。会话层:建立、终止、管理不同端间的会话连接。传输层:提供端到端(两台机器)之间的传输机制,以及提供流量控制、出错效验。网络层:逻辑寻址,IP地址,在下两层的基础上向资源子网提供服务。数据链路层:负责建立和管理节点间的链路,将数据封装成帧,进行可靠传输
- 如何快速开发一款AI小程序?基于微信云开发的实战指南
一键难忘
人工智能小程序微信
如何快速开发一款AI小程序?基于微信云开发的实战指南引言微信小程序凭借其轻便、易推广等特点,已成为应用开发的重要方式之一。而AI技术的快速发展让智能化应用成为可能。通过微信云开发(CloudBase)与小程序结合,开发者可以实现从前端到后端的一站式AI应用开发。本文将深入讲解如何利用微信云开发快速搭建一款AI小程序,展示从模型训练到云端部署的完整流程。准备工作在开始开发之前,确保完成以下准备工作:
- AI大模型学习路线及相关资源推荐
python游乐园
学习资源学习PythonAIAI编程人工智能
哈喽,大家好!本文为大家带来AI大模型学习路线及相关资源推荐,这对于学习掌握AI大模型很有帮助呦,希望大家多多点赞收藏~感谢~~1AI大模型的基础信息1.1什么是AI大模型AI大模型,即人工智能大型模型,是一种基于深度学习技术,具有海量参数、强大算力支持、能够处理和生成复杂数据的人工智能模型。1.2AI大模型的主要特点规模庞大:AI大模型通常包含海量的参数。例如,谷歌的BERT模型在最初发布时就有
- ribbon负载均衡策略说明
高飞的Leo
ribbon负载均衡java
Ribbon负载均衡策略说明和比较类名说明特点使用场景RoundRobinRule基于轮询算法选择服务实例。简单、公平,每个实例被选择的机会均等。适用于所有服务实例性能相近的场景。RandomRule随机选择服务实例。简单、随机,每个实例被选择的概率相同。适用于需要随机负载均衡的场景。WeightedResponseTimeRule根据服务实例的响应时间分配权重,选择响应时间短的实例。动态调整权重
- Mac下安装Zed以及Zed对MCP(模型上下文协议)的支持
skywalk8163
人工智能macos前端服务器
Zed是当前新流行的一种编辑器,支持MCP(模型上下文协议)Mac下安装Zed比较简单,直接有安装包,在这里:brewinstall--caskzedMacMonterey下是可以安装上的,亲测有效。配置使用Ctrl+Shift+P调出AI,然后设置使用的模型可以使用deepseek,但是没有找到使用自建服务器的设置方法,有些遗憾。附加学习关于Zed里面的MCP部分,手册:ModelContext
- python 实现 A* 算法
dev.null
Pythonpython算法开发语言
A*算法是一种广泛使用的路径搜索算法,结合了启发式搜索和Dijkstra算法的优点。它通过评估每个节点的代价函数(f(n)=g(n)+h(n))来选择最优路径,其中:(g(n))是从起点到当前节点的实际代价。(h(n))是从当前节点到目标节点的启发式估计代价(如曼哈顿距离或欧几里得距离)。以下是一个Python实现的A*算法示例:Python实现A*算法importheapqfrommathimp
- 数据分布偏移检测:保障模型在生产环境中的稳定性
trust Tomorrow
机器学习python机器学习人工智能深度学习
数据分布偏移检测:保障模型在生产环境中的稳定性引言在机器学习系统从开发环境部署到生产环境的过程中,数据分布偏移问题是影响模型性能的主要挑战之一。当训练数据与生产环境中的数据分布不一致时,即使是经过精心调优的模型也可能表现出明显的性能下降。本文将深入探讨数据分布偏移的检测方法,并提供一套系统化的解决方案,帮助读者构建更加稳健的机器学习系统。1.数据分布偏移问题概述1.1分布偏移的类型数据分布偏移主要
- 二叉树中两个节点最近公共祖先的查找算法研究
cloudman08
深度优先算法
目录摘要一、引言二、问题定义三、问题分析3.1二叉树的特性利用3.2暴力搜索的不足四、算法设计4.1递归算法(适用于普通二叉树)4.2迭代算法(适用于二叉搜索树)4.3代码实现(Python)4.4代码解释五、复杂度分析5.1递归算法复杂度(普通二叉树)5.2迭代算法复杂度(二叉搜索树)六、实际应用6.1文件系统目录结构6.2遗传算法中的基因树分析6.3数据库索引结构优化七、结论摘要在二叉树相关算
- 模拟退火算法详解
琛哥的程序
算法模拟退火算法机器学习
一、引言模拟退火算法(SimulatedAnnealing,简称SA)是一种通用概率型优化算法,用来在一个大的搜寻空间内找寻问题的最优解。其出发点是基于物理中固体物质的退火过程与一般组合优化问题之间的相似性。模拟退火算法从某一较高初温出发,伴随温度参数的不断下降,结合概率突跳特性在解空间中随机寻找目标函数的全局最优解,即在局部最优解能概率性地跳出并最终趋于全局最优。二、算法原理物理退火过程加温过程
- 在线 SQL 转 Python ORM工具
A__tao
sqloracle数据库
一款高效的在线SQL转PythonORM,支持自动解析SQL语句并生成PythonORM模型代码,适用于数据库管理、后端开发和ORM结构映射。无需手写ORM模型,一键转换SQL结构,提升开发效率,简化数据库操作。gotool
- (算法初学者)质数筛法
KuaCpp
算法c++
一边用与找质数,不会单独出题,但是会成为题目的一部分(先找出质数再去解题)以下3个为时间复杂度依次降低的方法首先要了解质数的定义:质数又称素数。一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数叫做质数;否则称为合数(规定1既不是质数也不是合数)。1普通的筛选质数(时间复杂度为n^2)基本思路:在prime数组中从2到i-1(排除1和本身)遍历如果能整除的就是质数然后是质数返回1,不是
- LangChain深度解析以及主要应用场景
小Rr
langchainpythondjangonumpy
文章目录LangChain是什么?LangChain的核心组件(1)PromptTemplates(提示模板)原理代码实例应用场景提示词优化策略(2)LLMs(大语言模型)原理代码实例应用场景调优策略(3)Chains(多步任务链)原理代码实例应用场景优化策略(4)Memory(记忆)原理代码实例应用场景优化策略(5)Agents(智能代理)原理代码实例应用场景优化策略案例分享案例1:电商智能客服
- C++学习:类和对象(一)
随便取个六字
c++
一、面向过程与面向对象编程1.什么是面向过程编程?面向过程编程(ProceduralProgramming)是一种以过程(或函数)为中心的编程范式。程序被视为一系列按顺序执行的步骤,主要通过函数对数据进行操作特点:执行顺序明确:程序按照代码书写的顺序执行侧重算法:重视具体的操作步骤和实现流程代码重用性低:相似的功能需要重复编写代码代码示例:计算数组元素的平均值#includeusingnamesp
- HarmonyNext实战:基于ArkTS的高性能图像处理应用开发
应用开发
引言在HarmonyNext生态系统中,图像处理是一个重要且具有挑战性的领域。本文将深入探讨如何利用ArkTS语言开发一个高性能的图像处理应用,重点介绍图像卷积、边缘检测等核心算法的实现。我们将从理论基础出发,逐步构建一个完整的图像处理应用,并通过优化技巧提升性能。图像处理基础1.1图像表示在数字图像处理中,图像通常被表示为一个二维矩阵,每个元素代表一个像素的灰度值或颜色值。在HarmonyNex
- AI大模型测试用例生成平台
王根生
测试开发测试用例质量保障AI编程nlp测试管理软件测试
AI测试用例生成平台项目背景技术栈业务描述项目展示项目重难点项目背景针对传统接口测试用例设计高度依赖人工经验、重复工作量大、覆盖场景有限等行业痛点,基于大语言模型技术实现接口测试用例智能生成系统。技术栈LangChain框架+GLM-4模型+PromptEngineering+Flask+Python+Bootstrap+jQuery业务描述用户在该平台上传Markdown形式的接口文档,点击生成
- Deepseek-R1大模型微调实战技术深度解析
大势下的牛马
搭建本地gptDeepseek大模型评测微调
一、Deepseek-R1架构特性与微调适配性分析1.1核心架构创新对微调的影响Deepseek-R1基于Deepseek-V3-Base架构,通过MoE(Mixture-of-Experts)与MLA(Multi-HeadLatentAttention)的协同设计,实现了参数规模与计算效率的平衡。其6710亿参数总量中,每个token仅激活37B参数的机制,使得微调过程中可针对不同任务动态调整专
- 模型可解释性:基于博弈论的SHAP值计算与特征贡献度分析(附PyTorch/TensorFlow实现)
燃灯工作室
Aipytorchtensorflow人工智能
一、技术原理与数学推导(含典型案例)1.1Shapley值基础公式SHAP值基于合作博弈论中的Shapley值,计算公式为:ϕi=∑S⊆F∖{i}∣S∣!(∣F∣−∣S∣−1)!∣F∣![f(S∪{i})−f(S)]\phi_i=\sum_{S\subseteqF\setminus\{i\}}\frac{|S|!(|F|-|S|-1)!}{|F|!}[f(S\cup\{i\})-f(S)]ϕi=S
- 模型可解释性:基于因果推理的反事实生成与决策可视化
燃灯工作室
Ai人工智能数学建模学习机器学习
1.技术原理与数学公式1.1因果推理基础结构方程模型(SEM):X=fX(PaX,UX)X=f_X(Pa_X,U_X)X=fX(PaX,UX)其中PaXPa_XPaX为父节点集合,UXU_XUX为外生变量反事实定义:YX=x(u)=Ydo(X=x)(u)Y_{X=x}(u)=Y_{do(X=x)}(u)YX=x(u)=Ydo(X=x)(u)表示在相同背景条件uuu下,强制变量XXX取xxx时的结果
- 集合框架
天子之骄
java数据结构集合框架
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- Table Driven(表驱动)方法实例
bijian1013
javaenumTable Driven表驱动
实例一:
/**
* 驾驶人年龄段
* 保险行业,会对驾驶人的年龄做年龄段的区分判断
* 驾驶人年龄段:01-[18,25);02-[25,30);03-[30-35);04-[35,40);05-[40,45);06-[45,50);07-[50-55);08-[55,+∞)
*/
public class AgePeriodTest {
//if...el
- Jquery 总结
cuishikuan
javajqueryAjaxWebjquery方法
1.$.trim方法用于移除字符串头部和尾部多余的空格。如:$.trim(' Hello ') // Hello2.$.contains方法返回一个布尔值,表示某个DOM元素(第二个参数)是否为另一个DOM元素(第一个参数)的下级元素。如:$.contains(document.documentElement, document.body); 3.$
- 面向对象概念的提出
麦田的设计者
java面向对象面向过程
面向对象中,一切都是由对象展开的,组织代码,封装数据。
在台湾面向对象被翻译为了面向物件编程,这充分说明了,这种编程强调实体。
下面就结合编程语言的发展史,聊一聊面向过程和面向对象。
c语言由贝尔实
- linux网口绑定
被触发
linux
刚在一台IBM Xserver服务器上装了RedHat Linux Enterprise AS 4,为了提高网络的可靠性配置双网卡绑定。
一、环境描述
我的RedHat Linux Enterprise AS 4安装双口的Intel千兆网卡,通过ifconfig -a命令看到eth0和eth1两张网卡。
二、双网卡绑定步骤:
2.1 修改/etc/sysconfig/network
- XML基础语法
肆无忌惮_
xml
一、什么是XML?
XML全称是Extensible Markup Language,可扩展标记语言。很类似HTML。XML的目的是传输数据而非显示数据。XML的标签没有被预定义,你需要自行定义标签。XML被设计为具有自我描述性。是W3C的推荐标准。
二、为什么学习XML?
用来解决程序间数据传输的格式问题
做配置文件
充当小型数据库
三、XML与HTM
- 为网页添加自己喜欢的字体
知了ing
字体 秒表 css
@font-face {
font-family: miaobiao;//定义字体名字
font-style: normal;
font-weight: 400;
src: url('font/DS-DIGI-e.eot');//字体文件
}
使用:
<label style="font-size:18px;font-famil
- redis范围查询应用-查找IP所在城市
矮蛋蛋
redis
原文地址:
http://www.tuicool.com/articles/BrURbqV
需求
根据IP找到对应的城市
原来的解决方案
oracle表(ip_country):
查询IP对应的城市:
1.把a.b.c.d这样格式的IP转为一个数字,例如为把210.21.224.34转为3524648994
2. select city from ip_
- 输入两个整数, 计算百分比
alleni123
java
public static String getPercent(int x, int total){
double result=(x*1.0)/(total*1.0);
System.out.println(result);
DecimalFormat df1=new DecimalFormat("0.0000%");
- 百合——————>怎么学习计算机语言
百合不是茶
java 移动开发
对于一个从没有接触过计算机语言的人来说,一上来就学面向对象,就算是心里上面接受的了,灵魂我觉得也应该是跟不上的,学不好是很正常的现象,计算机语言老师讲的再多,你在课堂上面跟着老师听的再多,我觉得你应该还是学不会的,最主要的原因是你根本没有想过该怎么来学习计算机编程语言,记得大一的时候金山网络公司在湖大招聘我们学校一个才来大学几天的被金山网络录取,一个刚到大学的就能够去和
- linux下tomcat开机自启动
bijian1013
tomcat
方法一:
修改Tomcat/bin/startup.sh 为:
export JAVA_HOME=/home/java1.6.0_27
export CLASSPATH=$CLASSPATH:$JAVA_HOME/lib/tools.jar:$JAVA_HOME/lib/dt.jar:.
export PATH=$JAVA_HOME/bin:$PATH
export CATALINA_H
- spring aop实例
bijian1013
javaspringAOP
1.AdviceMethods.java
package com.bijian.study.spring.aop.schema;
public class AdviceMethods {
public void preGreeting() {
System.out.println("--how are you!--");
}
}
2.beans.x
- [Gson八]GsonBuilder序列化和反序列化选项enableComplexMapKeySerialization
bit1129
serialization
enableComplexMapKeySerialization配置项的含义
Gson在序列化Map时,默认情况下,是调用Key的toString方法得到它的JSON字符串的Key,对于简单类型和字符串类型,这没有问题,但是对于复杂数据对象,如果对象没有覆写toString方法,那么默认的toString方法将得到这个对象的Hash地址。
GsonBuilder用于
- 【Spark九十一】Spark Streaming整合Kafka一些值得关注的问题
bit1129
Stream
包括Spark Streaming在内的实时计算数据可靠性指的是三种级别:
1. At most once,数据最多只能接受一次,有可能接收不到
2. At least once, 数据至少接受一次,有可能重复接收
3. Exactly once 数据保证被处理并且只被处理一次,
具体的多读几遍http://spark.apache.org/docs/lates
- shell脚本批量检测端口是否被占用脚本
ronin47
#!/bin/bash
cat ports |while read line
do#nc -z -w 10 $line
nc -z -w 2 $line 58422>/dev/null2>&1if[ $?-eq 0]then
echo $line:ok
else
echo $line:fail
fi
done
这里的ports 既可以是文件
- java-2.设计包含min函数的栈
bylijinnan
java
具体思路参见:http://zhedahht.blog.163.com/blog/static/25411174200712895228171/
import java.util.ArrayList;
import java.util.List;
public class MinStack {
//maybe we can use origin array rathe
- Netty源码学习-ChannelHandler
bylijinnan
javanetty
一般来说,“有状态”的ChannelHandler不应该是“共享”的,“无状态”的ChannelHandler则可“共享”
例如ObjectEncoder是“共享”的, 但 ObjectDecoder 不是
因为每一次调用decode方法时,可能数据未接收完全(incomplete),
它与上一次decode时接收到的数据“累计”起来才有可能是完整的数据,是“有状态”的
p
- java生成随机数
cngolon
java
方法一:
/**
* 生成随机数
* @author
[email protected]
* @return
*/
public synchronized static String getChargeSequenceNum(String pre){
StringBuffer sequenceNum = new StringBuffer();
Date dateTime = new D
- POI读写海量数据
ctrain
海量数据
import java.io.FileOutputStream;
import java.io.OutputStream;
import org.apache.poi.xssf.streaming.SXSSFRow;
import org.apache.poi.xssf.streaming.SXSSFSheet;
import org.apache.poi.xssf.streaming
- mysql 日期格式化date_format详细使用
daizj
mysqldate_format日期格式转换日期格式化
日期转换函数的详细使用说明
DATE_FORMAT(date,format) Formats the date value according to the format string. The following specifiers may be used in the format string. The&n
- 一个程序员分享8年的开发经验
dcj3sjt126com
程序员
在中国有很多人都认为IT行为是吃青春饭的,如果过了30岁就很难有机会再发展下去!其实现实并不是这样子的,在下从事.NET及JAVA方面的开发的也有8年的时间了,在这里在下想凭借自己的亲身经历,与大家一起探讨一下。
明确入行的目的
很多人干IT这一行都冲着“收入高”这一点的,因为只要学会一点HTML, DIV+CSS,要做一个页面开发人员并不是一件难事,而且做一个页面开发人员更容
- android欢迎界面淡入淡出效果
dcj3sjt126com
android
很多Android应用一开始都会有一个欢迎界面,淡入淡出效果也是用得非常多的,下面来实现一下。
主要代码如下:
package com.myaibang.activity;
import android.app.Activity;import android.content.Intent;import android.os.Bundle;import android.os.CountDown
- linux 复习笔记之常见压缩命令
eksliang
tar解压linux系统常见压缩命令linux压缩命令tar压缩
转载请出自出处:http://eksliang.iteye.com/blog/2109693
linux中常见压缩文件的拓展名
*.gz gzip程序压缩的文件
*.bz2 bzip程序压缩的文件
*.tar tar程序打包的数据,没有经过压缩
*.tar.gz tar程序打包后,并经过gzip程序压缩
*.tar.bz2 tar程序打包后,并经过bzip程序压缩
*.zi
- Android 应用程序发送shell命令
gqdy365
android
项目中需要直接在APP中通过发送shell指令来控制lcd灯,其实按理说应该是方案公司在调好lcd灯驱动之后直接通过service送接口上来给APP,APP调用就可以控制了,这是正规流程,但我们项目的方案商用的mtk方案,方案公司又没人会改,只调好了驱动,让应用程序自己实现灯的控制,这不蛋疼嘛!!!!
发就发吧!
一、关于shell指令:
我们知道,shell指令是Linux里面带的
- java 无损读取文本文件
hw1287789687
读取文件无损读取读取文本文件charset
java 如何无损读取文本文件呢?
以下是有损的
@Deprecated
public static String getFullContent(File file, String charset) {
BufferedReader reader = null;
if (!file.exists()) {
System.out.println("getFull
- Firebase 相关文章索引
justjavac
firebase
Awesome Firebase
最近谷歌收购Firebase的新闻又将Firebase拉入了人们的视野,于是我做了这个 github 项目。
Firebase 是一个数据同步的云服务,不同于 Dropbox 的「文件」,Firebase 同步的是「数据」,服务对象是网站开发者,帮助他们开发具有「实时」(Real-Time)特性的应用。
开发者只需引用一个 API 库文件就可以使用标准 RE
- C++学习重点
lx.asymmetric
C++笔记
1.c++面向对象的三个特性:封装性,继承性以及多态性。
2.标识符的命名规则:由字母和下划线开头,同时由字母、数字或下划线组成;不能与系统关键字重名。
3.c++语言常量包括整型常量、浮点型常量、布尔常量、字符型常量和字符串性常量。
4.运算符按其功能开以分为六类:算术运算符、位运算符、关系运算符、逻辑运算符、赋值运算符和条件运算符。
&n
- java bean和xml相互转换
q821424508
javabeanxmlxml和bean转换java bean和xml转换
这几天在做微信公众号
做的过程中想找个java bean转xml的工具,找了几个用着不知道是配置不好还是怎么回事,都会有一些问题,
然后脑子一热谢了一个javabean和xml的转换的工具里,自己用着还行,虽然有一些约束吧 ,
还是贴出来记录一下
顺便你提一下下,这个转换工具支持属性为集合、数组和非基本属性的对象。
packag
- C 语言初级 位运算
1140566087
位运算c
第十章 位运算 1、位运算对象只能是整形或字符型数据,在VC6.0中int型数据占4个字节 2、位运算符: 运算符 作用 ~ 按位求反 << 左移 >> 右移 & 按位与 ^ 按位异或 | 按位或 他们的优先级从高到低; 3、位运算符的运算功能: a、按位取反: ~01001101 = 101
- 14点睛Spring4.1-脚本编程
wiselyman
spring4
14.1 Scripting脚本编程
脚本语言和java这类静态的语言的主要区别是:脚本语言无需编译,源码直接可运行;
如果我们经常需要修改的某些代码,每一次我们至少要进行编译,打包,重新部署的操作,步骤相当麻烦;
如果我们的应用不允许重启,这在现实的情况中也是很常见的;
在spring中使用脚本编程给上述的应用场景提供了解决方案,即动态加载bean;
spring支持脚本