代码随想录算法训练营第四十二天|416. 分割等和子集

LeetCode416. 分割等和子集

        背包问题,有N件物品和一个最多能背重量为W 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。背包问题有多种背包方式,常见的有:01背包、完全背包、多重背包、分组背包和混合背包等等。要注意题目描述中商品是不是可以重复放入。即一个商品如果可以重复多次放入是完全背包,而只能放入一次是01背包,写法还是不一样的。要明确本题中我们要使用的是01背包,因为元素我们只能用一次。回归主题:首先,本题要求集合里能否出现总和为 sum / 2 的子集。那么来一一对应一下本题,看看背包问题如何来解决。

只有确定了如下四点,才能把01背包问题套到本题上来。

  • 背包的体积为sum / 2
  • 背包要放入的商品(集合里的元素)重量为 元素的数值,价值也为元素的数值
  • 背包如果正好装满,说明找到了总和为 sum / 2 的子集。
  • 背包中每一个元素是不可重复放入。

动态规划五部曲:

        1,确定dp数组以及下标的含义:01背包中,dp[j] 表示: 容量为j的背包,所背的物品价值最大可以为dp[j]。本题中每一个元素的数值既是重量,也是价值。套到本题,dp[j]表示 背包总容量(所能装的总重量)是j,放进物品后,背的最大重量为dp[j]。那么如果背包容量为target, dp[target]就是装满 背包之后的重量,所以 当 dp[target] == target 的时候,背包就装满了。那还有装不满的时候?拿输入数组 [1, 5, 11, 5],举例, dp[7] 只能等于 6,因为 只能放进 1 和 5。而dp[6] 就可以等于6了,放进1 和 5,那么dp[6] == 6,说明背包装满了。

        2,确定递推公式:01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);本题,相当于背包里放入数值,那么物品i的重量是nums[i],其价值也是nums[i]。所以递推公式:

        dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);

        3,dp数组如何初始化:在01背包,一维dp如何初始化,已经讲过,从dp[j]的定义来看,首先dp[0]一定是0。如果题目给的价值都是正整数那么非0下标都初始化为0就可以了,如果题目给的价值有负数,那么非0下标就要初始化为负无穷。这样才能让dp数组在递推的过程中取得最大的价值,而不是被初始值覆盖了。本题题目中 只包含正整数的非空数组,所以非0下标的元素初始化为0就可以了。代码如下:

// 题目中说:每个数组中的元素不会超过 100,数组的大小不会超过 200
// 总和不会大于20000,背包最大只需要其中一半,所以10001大小就可以了
vector dp(10001, 0);

        4,确定遍历顺序:

        在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中就已经说明:如果使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历!

代码如下:

// 开始 01背包
for(int i = 0; i < nums.size(); i++) {
    for(int j = target; j >= nums[i]; j--) { // 每一个元素一定是不可重复放入,所以从大到小遍历
        dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);
    }
}

        5,举例推导dp数组:dp[j]的数值一定是小于等于j的。如果dp[j] == j 说明,集合中的子集总和正好可以凑成总和j,理解这一点很重要。用例1,输入[1,5,11,5] 为例,如图:

代码随想录算法训练营第四十二天|416. 分割等和子集_第1张图片

最后dp[11] == 11,说明可以将这个数组分割成两个子集,使得两个子集的元素和相等。 

Java代码如下:

    public boolean canPartition(int[] nums) {
        if(nums == null || nums.length == 0) return false;
        int n = nums.length;
        int sum = 0;
        for(int num : nums) {
            sum += num;
        }
        if(sum % 2 != 0) return false;
        int target = sum / 2;
        int[] dp = new int[target + 1];
        for(int i = 0; i < n; i++) {
            for(int j = target; j >= nums[i]; j--) {
                dp[j] = Math.max(dp[j], dp[j-nums[i]] + nums[i]);
            }
        }
        return dp[target] == target;
    }

代码随想录算法训练营第四十二天|416. 分割等和子集_第2张图片

 

你可能感兴趣的:(算法)