将Parquet文件的数据导入Hive 、JSON文件导入ES

文章目录

  • 将Parquet文件的数据导入Hive
    • 查询parquet文件格式
      • 编译cli工具
      • 查看元数据信息
      • 查询抽样数据
    • 创建hive表 数据存储格式采用parquet
    • 加载文件
  • 将json数据导入ES
    • ES批量导入api
    • 原始json文件内容
    • 索引结构
    • 重组json脚本
    • 重组后的json文件
    • bulk api调用

将Parquet文件的数据导入Hive

查询parquet文件格式

主要利用社区工具 https://github.com/apache/parquet-mr/

编译cli工具

 cd parquet-cli;
 mvn clean install -DskipTests;

查看元数据信息

 java -cp parquet-cli-1.13.1.jar;dependency/* org.apache.parquet.cli.Main meta yellow_tripdata_2023-03.parquet

将Parquet文件的数据导入Hive 、JSON文件导入ES_第1张图片

查询抽样数据

 java -cp parquet-cli-1.13.1.jar;dependency/* org.apache.parquet.cli.Main head -n 2 yellow_tripdata_2023-03.parquet
{"VendorID": 2, "tpep_pickup_datetime": 1677629203000000, "tpep_dropoff_datetime": 1677629803000000, "passenger_count": 1, "trip_distance": 0.0, "RatecodeID": 1, "store_and_fwd_flag": "N", "PULocationID": 238, "DOLocationID": 42, "payment_type": 2, "fare_amount": 8.6, "extra": 1.0, "mta_tax": 0.5, "tip_amount": 0.0, "tolls_amount": 0.0, "improvement_surcharge": 1.0, "total_amount": 11.1, "congestion_surcharge": 0.0, "Airport_fee": 0.0}
{"VendorID": 2, "tpep_pickup_datetime": 1677629305000000, "tpep_dropoff_datetime": 1677631170000000, "passenger_count": 2, "trip_distance": 12.4, "RatecodeID": 1, "store_and_fwd_flag": "N", "PULocationID": 138, "DOLocationID": 231, "payment_type": 1, "fare_amount": 52.7, "extra": 6.0, "mta_tax": 0.5, "tip_amount": 12.54, "tolls_amount": 0.0, "improvement_surcharge": 1.0, "total_amount": 76.49, "congestion_surcharge": 2.5, "Airport_fee": 1.25}      

parquet 和 hive 的 field 类型映射关系

parquet 字段类型 hive 字段类型
BINARY STRING
BOOLEAN BOOLEAN
DOUBLE DOUBLE
FLOAT FLOAT
INT32 INT
INT64 BIGINT
INT96 TIMESTAMP
BINARY + OriginalType UTF8 STRING
BINARY + OriginalType DECIMAL DECIMAL

创建hive表 数据存储格式采用parquet

# 创建以parquet存储的表
  CREATE TABLE `test_trino.yellow_taxi_trip_records_tmp`
(
  `VendorID` int COMMENT '仪表供应商ID', 
  `tpep_pickup_datetime` TIMESTAMP COMMENT '仪表启动时间', 
  `tpep_dropoff_datetime` TIMESTAMP COMMENT '仪表关闭时间',
  `passenger_count` bigint COMMENT '乘客数量', 
  `trip_distance` double COMMENT '行程距离',
  `RateCodeID` bigint COMMENT '费率编码',
  `store_and_fwd_flag` string COMMENT '是否存储',
  `PULocationID` bigint COMMENT '上车区域坐标',
  `DOLocationID` bigint COMMENT '下场区域坐标',
  `payment_type` bigint COMMENT '付款方式',
  `fare_amount` double COMMENT '票价',
  `extra` double COMMENT '杂费附加费',
  `mta_tax` double COMMENT '税费',
  `tip_amount` double COMMENT '小费',
  `tolls_amount` double COMMENT '过路费',
  `improvement_surcharge` double COMMENT '改善附加费',
  `total_amount` double COMMENT '费用总计,不包含现金小费',
  `congestion_surcharge` double COMMENT '拥堵费',
  `airport_fee` double COMMENT '机房上下车费用'
)
COMMENT '黄色的出租车记录'
PARTITIONED BY ( 
  `ym` string COMMENT '分区字段,年月(yyyyMM)')
STORED AS PARQUET;

加载文件

  # 利用hive客户端load parquet数据
    LOAD DATA LOCAL INPATH '/opt/yellow_tripdata_2023-02.parquet' OVERWRITE INTO TABLE `test_trino.yellow_taxi_trip_records_tmp` PARTITION (ym=202302);

将json数据导入ES

ES批量导入api

批量写入es需要使用bulk api,这个API支持json文件的数据导入。

原始json文件内容

{"geonameid": 2986043, "name": "Pic de Font Blanca", "latitude": 42.64991, "longitude": 1.53335, "country_code": "AD", "population": 0}
{"geonameid": 2994701, "name": "Roc Mélé", "latitude": 42.58765, "longitude": 1.74028, "country_code": "AD", "population": 0}
{"geonameid": 3007683, "name": "Pic des Langounelles", "latitude": 42.61203, "longitude": 1.47364, "country_code": "AD", "population": 0}
{"geonameid": 3017832, "name": "Pic de les Abelletes", "latitude": 42.52535, "longitude": 1.73343, "country_code": "AD", "population": 0}
{"geonameid": 3017833, "name": "Estany de les Abelletes", "latitude": 42.52915, "longitude": 1.73362, "country_code": "AD", "population": 0}
{"geonameid": 3023203, "name": "Port Vieux de la Coume d’Ose", "latitude": 42.62568, "longitude": 1.61823, "country_code": "AD", "population": 0}
{"geonameid": 3029315, "name": "Port de la Cabanette", "latitude": 42.6, "longitude": 1.73333, "country_code": "AD", "population": 0}
{"geonameid": 3034945, "name": "Port Dret", "latitude": 42.60172, "longitude": 1.45562, "country_code": "AD", "population": 0}
{"geonameid": 3038814, "name": "Costa de Xurius", "latitude": 42.50692, "longitude": 1.47569, "country_code": "AD", "population": 0}
{"geonameid": 3038815, "name": "Font de la Xona", "latitude": 42.55003, "longitude": 1.44986, "country_code": "AD", "population": 0}
{"geonameid": 3038816, "name": "Xixerella", "latitude": 42.55327, "longitude": 1.48736, "country_code": "AD", "population": 0}
{"geonameid": 3038818, "name": "Riu Xic", "latitude": 42.57165, "longitude": 1.67554, "country_code": "AD", "population": 0}
{"geonameid": 3038819, "name": "Pas del Xic", "latitude": 42.49766, "longitude": 1.57597, "country_code": "AD", "population": 0}
{"geonameid": 3038820, "name": "Roc del Xeig", "latitude": 42.56068, "longitude": 1.4898, "country_code": "AD", "population": 0}

索引结构

PUT allcountries
{
  "settings": {
    "index.number_of_replicas": 0
  },
  "mappings": {
        "_doc":{
            "dynamic": "strict",
            "properties": {
              "geonameid": {
                "type": "long"
              },
              "name": {
                "type": "text"
              },
              "latitude": {
                "type": "double"
              },
              "longitude": {
                "type": "double"
              },
              "country_code": {
                "type": "text"
              },
              "population": {
                "type": "long"
              }
            }
        }
  }
}

重组json脚本

# coding=UTF-8
# 将原始josn重组出适合ES bulk API导入的JSON数据
import json
import os
import io
current_path = os.path.dirname(__file__)
#w打开一个文件只用于写入,r用于只读
#如果该文件已存在则打开文件,并从开头开始编辑,即原有内容会被删除
#如果该文件不存在,创建新文件
new_jsonfile = io.open(current_path+'/es-test-bulk.json','w',encoding='utf-8')

with io.open(current_path+'/es-test.json','r',encoding='utf-8')as fp:
    for line in fp.readlines():
        json_data=json.loads(line)
        #添加index行
        new_data={}
        new_data['index']={}
        new_data['index']['_index']="allCountries"
        temp=json.dumps(new_data).encode("utf-8").decode('unicode_escape')
        new_jsonfile.write(temp)
        new_jsonfile.write('\n'.decode('utf-8'))

        #原json对象处理为1行
        old_data={}
        old_data['geonameid']=json_data['geonameid']
        old_data['name']=json_data['name']
        old_data['latitude']=json_data['latitude']
        old_data['longitude']=json_data['longitude']
        old_data['country_code']=json_data['country_code']
        old_data['population']=json_data['population']
        temp=json.dumps(old_data).encode("utf-8").decode('unicode_escape')
        new_jsonfile.write(temp)
        new_jsonfile.write('\n'.decode('utf-8'))
        
new_jsonfile.close()

重组后的json文件

{"index": {"_index": "allcountries"}}
{"name": "El Barrerol", "geonameid": 3040809, "longitude": 1.45207, "country_code": "AD", "latitude": 42.439579999999999, "population": 0}
{"index": {"_index": "allcountries"}}
{"name": "Camí d’Easagents", "geonameid": 3040810, "longitude": 1.61341, "country_code": "AD", "latitude": 42.53349, "population": 0}
{"index": {"_index": "allcountries"}}
{"name": "Pleta de Duedra", "geonameid": 3040811, "longitude": 1.4949399999999999, "country_code": "AD", "latitude": 42.625540000000001, "population": 0}
{"index": {"_index": "allcountries"}}
{"name": "Pleta de Duedra", "geonameid": 3040812, "longitude": 1.5637000000000001, "country_code": "AD", "latitude": 42.61985, "population": 0}
{"index": {"_index": "allcountries"}}
{"name": "Plana Duedra", "geonameid": 3040813, "longitude": 1.5228900000000001, "country_code": "AD", "latitude": 42.59393, "population": 0}
{"index": {"_index": "allcountries"}}
{"name": "Planella del Duc", "geonameid": 3040814, "longitude": 1.4995700000000001, "country_code": "AD", "latitude": 42.456490000000002, "population": 0}
{"index": {"_index": "allcountries"}}
{"name": "Canal del Duc", "geonameid": 3040815, "longitude": 1.6195600000000001, "country_code": "AD", "latitude": 42.576920000000001, "population": 0}
{"index": {"_index": "allcountries"}}
{"name": "Canal Dreta", "geonameid": 3040816, "longitude": 1.5381, "country_code": "AD", "latitude": 42.551319999999997, "population": 0}
{"index": {"_index": "allcountries"}}
{"name": "Canal Dreta", "geonameid": 3040817, "longitude": 1.4865900000000001, "country_code": "AD", "latitude": 42.506630000000001, "population": 0}
{"index": {"_index": "allcountries"}}
{"name": "Port Dret", "geonameid": 3040818, "longitude": 1.7001299999999999, "country_code": "AD", "latitude": 42.573979999999999, "population": 0}

bulk api调用

curl -H "Content-Type: application/x-ndjson"  -XPOST "192.168.1.1:9600/allcountries/_doc/_bulk" --data-binary @"/opt/es-documents-bulk.json"

你可能感兴趣的:(工具使用,hive,hadoop,大数据)