幂函数导数公式的推导

1 幂函数的定义域

【引理】 设幂函数 f ( x ) = x α ( α ∈ R ) f(x)=x^\alpha(\alpha\in R) f(x)=xα(αR) 的定义域为 D α D_\alpha Dα,则
(1)当 α = 0 \alpha = 0 α=0 D α = { x ∣ x ≠ 0 } D_\alpha=\{x|x\neq 0\} Dα={xx=0},且此时 x 0 = 1 x^0=1 x0=1
(2)当 α \alpha α 是非零有理数时,可设 α = p q \alpha=\frac{p}{q} α=qp ( ∣ p ∣ , q ∈ N ∗ |p|,q\in N^* p,qN p p p q q q互质),有:(以下约定 a 1 = a , a ∈ R \sqrt[1]{a}=a,a\in R 1a =a,aR
幂函数导数公式的推导_第1张图片
【注】 q = 1 q=1 q=1时表示非零整数的情况
(3)当 α \alpha α 是正无理数时, D α = [ 0 , + ∞ D_\alpha=[0,+\infty Dα=[0,+);当 α \alpha α是负无理数时, D α = ( 0 , + ∞ ) D_\alpha=(0,+\infty) Dα=(0,+).

2 幂函数导数公式的推导

  1. α ∈ N \alpha \in N αN 时:
    (1) α = 0 \alpha = 0 α=0
      当 α = 0 \alpha = 0 α=0 时, D α = { x ∣ x ≠ 0 } D_\alpha = \{x| x\neq 0\} Dα={xx=0} f ( x ) = 1 f(x)=1 f(x)=1 f ′ ( x ) = 0 f'(x)=0 f(x)=0.
    (2) α ∈ N ∗ \alpha\in N^* αN
      (i) α = 1 \alpha=1 α=1 f ′ ( x ) = x ′ = 1    ( x ∈ R ) f'(x)=x'=1 \ \ (x\in R) f(x)=x=1  (xR)
      (ii) α ≥ 2 \alpha \geq 2 α2:根据恒等式 a n + 1 + b n + 1 = ( a − b ) ( a n + a n − 1 b + a n − 2 b 2 + . . . + a b n − 1 + b n ) , n ∈ N ∗ a^{n+1}+b^{n+1}=(a-b)(a^n+a^{n-1}b+a^{n-2}b^2+...+ab^{n-1}+b^n),n\in N^* an+1+bn+1=(ab)(an+an1b+an2b2+...+abn1+bn),nN(可用多项式乘法法则证明该等式),可得:
    f ′ ( x ) = lim ⁡ Δ x → 0 ( x + Δ x ) α − x α Δ x = lim ⁡ Δ x → 0 [ ( x + Δ x ) α − 1 + ( x + Δ x ) α − 2 x + ( x + Δ x ) α − 3 x 2 + . . . + ( x + Δ x ) x α − 2 + x α − 1 ] = α x α − 1 ( x ∈ R ) \begin{aligned} f'(x) &= \lim_{\Delta x\rightarrow 0}\frac{(x+\Delta x)^\alpha - x^\alpha}{\Delta x} \\ &= \lim_{\Delta x\rightarrow 0}[(x+\Delta x)^{\alpha -1}+(x+\Delta x)^{\alpha -2}x+(x+\Delta x)^{\alpha -3}x^2+...+(x+\Delta x)x^{\alpha-2}+x^{\alpha -1}]\\ &= \alpha x^{\alpha -1}(x\in R) \end{aligned} f(x)=Δx0limΔx(x+Δx)αxα=Δx0lim[(x+Δx)α1+(x+Δx)α2x+(x+Δx)α3x2+...+(x+Δx)xα2+xα1]=αxα1xR)

  2. − α ∈ N ∗ -\alpha \in N^* αN时:
    此时 D α = { x ∣ x ≠ 0 } D_\alpha=\{ x|x\neq 0\} Dα={xx=0}
    根据之前的结论,当 α ∈ N ∗ \alpha\in N^* αN时,有 ( x α ) ′ = α x α − 1 ( x ∈ R ) (x^\alpha)'=\alpha x^{\alpha -1}(x\in R) (xα)=αxα1(xR)
    现在 − α ∈ N ∗ -\alpha \in N^* αN,有 f ′ ( x ) = ( 1 x − α ) ′ ( x ≠ 0 ) f'(x)=(\frac{1}{x^{-\alpha}})'(x\neq 0) f(x)=(xα1)(x=0)
    根据复合函数的求导法则,
    f ′ ( x ) = − 1 ( x − α ) 2 ⋅ ( x − α ) ′ = − 1 ( x − α ) 2 ⋅ ( − α x − α − 1 ) = α x α − 1 ( x ≠ 0 ) f'(x)=-\frac{1}{(x^{-\alpha})^2 }\cdot(x^{-\alpha})'=-\frac{1}{(x^{-\alpha})^2 }\cdot(-\alpha x^{-\alpha-1})=\alpha x^{\alpha -1}(x\neq 0) f(x)=(xα)21(xα)=(xα)21(αxα1)=αxα1(x=0)
    α ∈ Z \alpha\in Z αZ 的推导完了。

  3. α ∈ Q \alpha \in Q αQ α ∉ Z \alpha \notin Z α/Z时:
    (1)先求得 α = 1 n ( n − 1 ∈ N ∗ ) \alpha = \frac{1}{n}(n-1\in N^*) α=n1(n1N) 时结论成立:
      (i)当 n = 2 k ( k ∈ N ∗ ) n=2k(k\in N^*) n=2k(kN)时, D α = [ 0 , + ∞ ) D_\alpha = [0,+\infty) Dα=[0,+).
    α < 1 \alpha < 1 α<1 时, f ′ ( 0 + ) = lim ⁡ Δ x → 0 + ( 0 + Δ x ) α − 0 α Δ x = lim ⁡ Δ x → 0 + 1 ( Δ x ) 1 − α = + ∞ f'(0^+)=\lim_{\Delta x\rightarrow 0^+}\frac{(0+\Delta x)^\alpha - 0^\alpha}{\Delta x}=\lim_{\Delta x\rightarrow 0^+}\frac{1}{(\Delta x)^{1-\alpha}}=+\infty f(0+)=limΔx0+Δx(0+Δx)α0α=limΔx0+(Δx)1α1=+,所以 f ′ ( 0 ) f'(0) f(0)不存在;
    x > 0 x>0 x>0 时,根据恒等式 a n + 1 + b n + 1 = ( a − b ) ( a n + a n − 1 b + a n − 2 b 2 + . . . + a b n − 1 + b n ) , n ∈ N ∗ a^{n+1}+b^{n+1}=(a-b)(a^n+a^{n-1}b+a^{n-2}b^2+...+ab^{n-1}+b^n),n\in N^* an+1+bn+1=(ab)(an+an1b+an2b2+...+abn1+bn),nN(可用多项式乘法法则证明该等式)
    f ′ ( x ) = lim ⁡ Δ x → 0 x + Δ x 2 k − x 2 k Δ x = lim ⁡ Δ x → 0 1 ( x + Δ x 2 k ) 2 k − 1 + ( x + Δ x 2 k ) 2 k − 2 ( x 2 k ) + . . . + ( x + Δ x 2 k ) ( x 2 k ) 2 k − 2 + ( x 2 k ) 2 k − 1 = 1 2 k ( x 2 k ) 2 k − 1 = α x α − 1 ( x > 0 ) \begin{aligned} f'(x) &= \lim_{\Delta x\rightarrow 0}\frac{\sqrt[2k]{x+\Delta x}-\sqrt[2k]{x}}{\Delta x} \\ &= \lim_{\Delta x\rightarrow 0}\frac{1}{(\sqrt[2k]{x+\Delta x})^{2k-1}+(\sqrt[2k]{x+\Delta x})^{2k-2}(\sqrt[2k]{x})+...+(\sqrt[2k]{x+\Delta x})(\sqrt[2k]{x})^{2k-2}+(\sqrt[2k]{x})^{2k-1}}\\ &=\frac{1}{2k(\sqrt[2k]{x})^{2k-1}} = \alpha x^{\alpha -1}(x > 0) \end{aligned} f(x)=Δx0limΔx2kx+Δx 2kx =Δx0lim(2kx+Δx )2k1+(2kx+Δx )2k2(2kx )+...+(2kx+Δx )(2kx )2k2+(2kx )2k11=2k(2kx )2k11=αxα1x>0)
      (ii)当 n = 2 k + 1 ( k ∈ N ∗ ) n=2k+1(k\in N^*) n=2k+1(kN)时, D α = R D_\alpha =R Dα=R.
    由上一步的结论,当 α < 1 \alpha<1 α<1时, f ′ ( 0 ) f'(0) f(0)不存在;当 x ≠ 0 x\neq 0 x=0时,由 a n + 1 + b n + 1 = ( a − b ) ( a n + a n − 1 b + a n − 2 b 2 + . . . + a b n − 1 + b n ) , n ∈ N ∗ a^{n+1}+b^{n+1}=(a-b)(a^n+a^{n-1}b+a^{n-2}b^2+...+ab^{n-1}+b^n),n\in N^* an+1+bn+1=(ab)(an+an1b+an2b2+...+abn1+bn),nN可得
    f ′ ( x ) = lim ⁡ Δ x → 0 x + Δ x 2 k + 1 − x 2 k + 1 Δ x = lim ⁡ Δ x → 0 1 ( x + Δ x 2 k + 1 ) 2 k + ( x + Δ x 2 k + 1 ) 2 k − 1 ( x 2 k + 1 ) + . . . + ( x + Δ x 2 k + 1 ) ( x 2 k ) 2 k − 1 + ( x 2 k + 1 ) 2 k = 1 ( 2 k + 1 ) ( x 2 k + 1 ) 2 k = α x α − 1 ( x ≠ 0 ) \begin{aligned} f'(x) &= \lim_{\Delta x\rightarrow 0}\frac{\sqrt[2k+1]{x+\Delta x}-\sqrt[2k+1]{x}}{\Delta x} \\ &= \lim_{\Delta x\rightarrow 0}\frac{1}{(\sqrt[2k+1]{x+\Delta x})^{2k}+(\sqrt[2k+1]{x+\Delta x})^{2k-1}(\sqrt[2k+1]{x})+...+(\sqrt[2k+1]{x+\Delta x})(\sqrt[2k]{x})^{2k-1}+(\sqrt[2k+1]{x})^{2k}}\\ &=\frac{1}{(2k+1)(\sqrt[2k+1]{x})^{2k}} = \alpha x^{\alpha -1}(x\neq 0) \end{aligned} f(x)=Δx0limΔx2k+1x+Δx 2k+1x =Δx0lim(2k+1x+Δx )2k+(2k+1x+Δx )2k1(2k+1x )+...+(2k+1x+Δx )(2kx )2k1+(2k+1x )2k1=(2k+1)(2k+1x )2k1=αxα1x=0)

    (2)设 α = p q   ( ∣ p ∣ , q − 1 ∈ N ∗ \alpha =\frac{p}{q} \ (|p|,q-1\in N^* α=qp (p,q1N,p 与 q 互质)(这里与之前【引理】的 q ∈ N ∗ q\in N^* qN不一样是因为我们已将 α ∈ Z \alpha\in Z αZ的情况讨论完了)

      (i) 当 q q q 是正偶数且 p p p 是正奇数且 p > q p>q p>q 时, D α = D p q = [ 0 , + ∞ ) D_\alpha=D_{\frac{p}{q}}=[0,+\infty) Dα=Dqp=[0,+). 当 α > 1 \alpha>1 α>1 时, f ′ ( 0 + ) = lim ⁡ Δ x → 0 + ( 0 + Δ x ) α − 0 α Δ x = lim ⁡ Δ x → 0 + Δ x α − 1 = 0 f'(0^+)=\lim_{\Delta x\rightarrow 0^+}\frac{(0+\Delta x)^\alpha-0^\alpha}{\Delta x}=\lim_{\Delta x\rightarrow 0^+\Delta x^{\alpha -1}}=0 f(0+)=limΔx0+Δx(0+Δx)α0α=limΔx0+Δxα1=0 α = p q > 1 \alpha = \frac{p}{q}>1 α=qp>1,所以 f ′ ( 0 + ) = 0 f'(0^+)=0 f(0+)=0. 当 x > 0 x>0 x>0,由开始的结论 α ∈ Z \alpha\in Z αZ α = 1 n ( n − 1 ∈ N ∗ ) \alpha=\frac{1}{n}(n-1\in N^*) α=n1(n1N)时结论成立,在根据复合函数的链式求导法则,就有:
    f ′ ( x ) = [ ( x 1 q ) p ] ′ = p [ ( x 1 q ) ] p − 1 ⋅ 1 q x 1 q − 1 = p q x p q − 1 = α x α − 1 ( x > 0 ) . f'(x)=[(x^{\frac{1}{q}})^p]'=p[(x^{\frac{1}{q}})]^{p-1}\cdot \frac{1}{q}x^{\frac{1}{q}-1}=\frac{p}{q}x^{\frac{p}{q}-1}=\alpha x^{\alpha -1}(x>0). f(x)=[(xq1)p]=p[(xq1)]p1q1xq11=qpxqp1=αxα1(x>0).
    可得 f ′ ( x ) = α x α − 1 ( x ≥ 0 ) f'(x)=\alpha x^{\alpha -1}(x\geq 0) f(x)=αxα1(x0)

      (ii) 当 q q q 是正偶数且 p p p 是正奇数且 p < q pp<q 时, D α = D p q = [ 0 , + ∞ ) D_\alpha = D_\frac{p}{q} = [0,+\infty) Dα=Dqp=[0,+). 当 α < 1 \alpha<1 α<1 时, f ′ ( 0 + ) f'(0^+) f(0+) 不存在; α = p q < 1 \alpha = \frac{p}{q}<1 α=qp<1,所以 f ′ ( 0 + ) f'(0^+) f(0+)不存在;当 x > 0 x>0 x>0, 由开始的结论 α ∈ Z \alpha\in Z αZ α = 1 n ( n − 1 ∈ N ∗ ) \alpha=\frac{1}{n}(n-1\in N^*) α=n1(n1N)时结论成立,在根据复合函数的链式求导法则,就有:
    f ′ ( x ) = [ ( x 1 q ) p ] ′ = p [ ( x 1 q ) ] p − 1 ⋅ 1 q x 1 q − 1 = p q x p q − 1 = α x α − 1 ( x > 0 ) . f'(x)=[(x^{\frac{1}{q}})^p]'=p[(x^{\frac{1}{q}})]^{p-1}\cdot \frac{1}{q}x^{\frac{1}{q}-1}=\frac{p}{q}x^{\frac{p}{q}-1}=\alpha x^{\alpha -1}(x>0). f(x)=[(xq1)p]=p[(xq1)]p1q1xq11=qpxqp1=αxα1(x>0).
    可得 f ′ ( x ) = α x α − 1 ( x > 0 ) f'(x)=\alpha x^{\alpha -1}(x>0) f(x)=αxα1(x>0).

      (iii) 当 q q q 是正偶数且 p p p是负奇数时, D α = D p q = ( 0 , + ∞ ) D_\alpha = D_{\frac{p}{q}}=(0,+\infty) Dα=Dqp=(0,+). 由开始的结论 p p p是正偶数, q q q是正奇数时结论成立,再根据复合函数的链式求导法则,就有:
    f ′ ( x ) = [ ( x − p q ) − 1 ] ′ = − 1 [ ( x − p q ) ] 2 ⋅ ( − p q ) x − p q − 1 = p q x p q − 1 = α x α − 1 ( x > 0 ) f'(x)=[(x^{-\frac{p}{q}})^{-1}]'=-\frac{1}{[(x^{-\frac{p}{q}})]^2}\cdot (-\frac{p}{q})x^{-\frac{p}{q}-1}=\frac{p}{q}x^{\frac{p}{q}-1}=\alpha x^{\alpha -1}(x>0) f(x)=[(xqp)1]=[(xqp)]21(qp)xqp1=qpxqp1=αxα1(x>0)
    可得 f ′ ( x ) = α x α − 1 ( x > 0 ) f'(x)=\alpha x^{\alpha -1}(x>0) f(x)=αxα1(x>0).

      (iv) 当 q q q 是奇数且 p > q ≥ 3 p>q\geq 3 p>q3 时, D α = D p q = R D_\alpha = D_{\frac{p}{q}}= R Dα=Dqp=R. 同之前的结论 f ′ ( 0 ) = 0 f'(0)=0 f(0)=0;当 x ≠ 0 x\neq 0 x=0时,由 1 和 (1)可得
    f ′ ( x ) = { [ ( x 1 q ) ] p } ′ = p [ ( x 1 q ) ] p − 1 ⋅ 1 q x 1 q − 1 = p q x p q − 1 = α x α − 1 ( x ≠ 0 ) f'(x) = \{[(x^{\frac{1}{q}})]^p\}'=p[(x^{\frac{1}{q}})]^{p-1}\cdot \frac{1}{q}x^{\frac{1}{q}-1}=\frac{p}{q}x^{\frac{p}{q}-1}=\alpha x^{\alpha -1}(x\neq 0) f(x)={[(xq1)]p}=p[(xq1)]p1q1xq11=qpxqp1=αxα1(x=0)
    可得, f ′ ( x ) = α x α − 1 ( x ∈ R ) f'(x)=\alpha x^{\alpha -1}(x\in R) f(x)=αxα1(xR)

      (v) 当 q q q是奇数且 p ∈ N ∗ , p < q , q ≥ 3 p\in N^*, ppN,p<q,q3 时, D p q = R D_{\frac{p}{q}}=R Dqp=R.由之前的结论 f ′ ( 0 ) f'(0) f(0)不存在;当 x ≠ 0 x\neq 0 x=0时,和(v)一样的推导得 f ′ ( x ) = α x α − 1 ( x ≠ 0 ) f'(x)=\alpha x^{\alpha -1}(x \neq 0) f(x)=αxα1(x=0)

    可得 f ′ ( x ) = α x α − 1 ( x ≠ 0 ) f'(x)=\alpha x^{\alpha -1}(x\neq 0 ) f(x)=αxα1(x=0).

      (vi) 当 q q q是奇数且 q ≥ 3 , − p ∈ N ∗ q\geq 3, -p\in N^* q3,pN时, D α = D p q = { x ∣ x ≠ 0 } D_{\alpha}=D_{\frac{p}{q}}=\{x|x\neq 0\} Dα=Dqp={xx=0}.根据(iv)和(v),有:
    f ′ ( x ) = [ ( x − p q ) − 1 ] ′ = − 1 [ ( x − p q ) ] 2 ⋅ ( − p q ) x − p q − 1 = p q x p q − 1 = α x α − 1 ( x ≠ 0 ) f'(x)=[(x^{-\frac{p}{q}})^{-1}]'=-\frac{1}{[(x^{-\frac{p}{q}})]^2}\cdot (-\frac{p}{q})x^{-\frac{p}{q}-1}=\frac{p}{q}x^{\frac{p}{q}-1}=\alpha x^{\alpha - 1}(x\neq 0) f(x)=[(xqp)1]=[(xqp)]21(qp)xqp1=qpxqp1=αxα1(x=0)
    可得 f ′ ( x ) = α x α − 1 ( x ≠ 0 ) f'(x)=\alpha x^{\alpha -1}(x\neq 0) f(x)=αxα1(x=0).

α ∈ Q \alpha \in Q αQ到这里就全部推导完了.

  1. α \alpha α 是无理数时:

    (1)当 α \alpha α 是正无理数时, D α = [ 0 , + ∞ ) D_\alpha = [0,+\infty) Dα=[0,+).
    (i)当 α \alpha α是大于1的无理数时,根据开头的结论 f ′ ( 0 ) = 0 f'(0)=0 f(0)=0;当 x > 0 x>0 x>0时,由导数公式 ( l o g a x ) ′ = 1 x l n a (log_ax)'=\frac{1}{xlna} (logax)=xlna1 ( a x ) ′ = a x l n a (a^x)'=a^xlna (ax)=axlna(这两个公式的推导见同系列的其它文章)及复合函数的求导法则
    f ′ ( x ) = ( x α ) ′ = ( e α l n x ) ′ = e α l n x ⋅ α x = α x α − 1 ( x > 0 ) . f'(x)=(x^\alpha)'=(e^{\alpha lnx})'=e^{\alpha lnx}\cdot \frac{\alpha}{x}=\alpha x^{\alpha -1}(x>0). f(x)=(xα)=(eαlnx)=eαlnxxα=αxα1(x>0).
    可得, f ′ ( x ) = α x α − 1 ( x ≥ 0 ) f'(x)=\alpha x^{\alpha-1}(x\geq 0) f(x)=αxα1(x0).
    (ii) 当 α \alpha α是小于1的无理数时,根据开头的结论 f ′ ( 0 ) f'(0) f(0)不存在;当 x > 0 x>0 x>0时,由导数公式 ( l o g a x ) ′ = 1 x l n a (log_ax)'=\frac{1}{xlna} (logax)=xlna1 ( a x ) ′ = a x l n a (a^x)'=a^xlna (ax)=axlna(这两个公式的推导见同系列的其它文章)及复合函数的求导法则
    f ′ ( x ) = ( x α ) ′ = ( e α l n x ) ′ = e α l n x ⋅ α x = α x α − 1 ( x > 0 ) . f'(x)=(x^\alpha)'=(e^{\alpha lnx})'=e^{\alpha lnx}\cdot \frac{\alpha}{x}=\alpha x^{\alpha -1}(x>0). f(x)=(xα)=(eαlnx)=eαlnxxα=αxα1(x>0).
    可得, f ′ ( x ) = α x α − 1 ( x > 0 ) f'(x)=\alpha x^{\alpha-1}(x > 0) f(x)=αxα1(x>0).

    (2)当 α \alpha α是负无理数时, D α = ( 0 , + ∞ ) D_\alpha =(0,+\infty) Dα=(0,+).

    由导数公式 ( l o g a x ) ′ = 1 x l n a (log_ax)'=\frac{1}{xlna} (logax)=xlna1 ( a x ) ′ = a x l n a (a^x)'=a^xlna (ax)=axlna(这两个公式的推导见同系列的其它文章)及复合函数的求导法则
    f ′ ( x ) = ( x α ) ′ = ( e α l n x ) ′ = e α l n x ⋅ α x = α x α − 1 ( x > 0 ) . f'(x)=(x^\alpha)'=(e^{\alpha lnx})'=e^{\alpha lnx}\cdot \frac{\alpha}{x}=\alpha x^{\alpha -1}(x>0). f(x)=(xα)=(eαlnx)=eαlnxxα=αxα1(x>0).
    可得, f ′ ( x ) = α x α − 1 ( x > 0 ) f'(x)=\alpha x^{\alpha-1}(x > 0) f(x)=αxα1(x>0).

    α ∈ R \alpha \in R αR到这里就讨论完了。

你可能感兴趣的:(数学,线性代数,概率论,几何学)