- 【Crypto】CTF 密码学题目解题思路图
D-river
CTF密码学安全网络安全
CTF密码学题目解题思路图密码学题目├──1.编码/转换│├──1.1Base64││└──步骤:检查填充字符(=),解码工具(CyberChef)。│├──1.2Hex││└──步骤:检查0-9a-f,转换为ASCII。│├──1.3ASCII码││└──步骤:十进制/十六进制转字符。│└──1.4其他编码(摩尔斯、URL等)│└──步骤:识别符号(如.-/),使用专用解码器。│├──2.古典密
- 笔记本电脑外接固态移动硬盘可以用于深度学习吗
Vertira
pytorch电脑深度学习智能电视
笔记本电脑外接固态移动硬盘可以用于深度学习。虽然外接固态移动硬盘的传输速度和内置固态硬盘相比有一定差距,但在现代技术下,外接固态移动硬盘的传输速度已经非常快,能够满足深度学习的需求。例如,USB3.2Gen2×2PSSD的传输速度可以达到2000MB/s,这对于深度学习来说已经足够12。具体应用场景和性能表现传输速度:现代外接固态移动硬盘,如USB3.2Gen2×2PSSD,传输速度可以达
- 使用OpenAI API实现自然语言处理应用
shuoac
自然语言处理人工智能python
使用OpenAIAPI实现自然语言处理应用技术背景介绍随着人工智能技术的不断发展,自然语言处理(NLP)在各种应用中的地位越来越重要。从自动文本生成、聊天机器人到智能搜索引擎,NLP技术的应用场景非常广泛。而OpenAI提供的API使得开发者可以轻松地将先进的NLP模型集成到他们的应用中。核心原理解析OpenAI的API基于强大的GPT(GenerativePre-trainedTransform
- 2024年大数据技术4:Lambda和Kappa架构区别_lambda架构和kappa架构区别,2024年最新你花了多久弄明白架构设计
2401_84182146
程序员大数据面试学习
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新需要这份系统化资料的朋友,可以戳这里获取虽然Lambda架构使用起来十分灵活,并且可以适用于很多的应用场景,但在实际应用的时候,Lambda架构也
- 长文本生成的“中间迷途”:当AI在信息洪流中迷失与觉醒
步子哥
AGI通用人工智能人工智能
长文本生成的困境:当AI在信息洪流中迷失在人工智能领域,大型语言模型(LLM)如同拥有无限记忆的超级读者,能轻松消化整座图书馆的藏书。但当被要求撰写万字论文时,这些"博学者"往往只能产出不足两千字的短文——这就像让美食家品尝满汉全席后,只能复述前菜和甜点的味道。更令人困扰的是,当输入文本超过8000词时,模型会像在图书馆迷路的读者,对"中间书架"的内容视而不见,这种现象被形象地称为"中间丢失"(L
- 人工智能学习
星月IWJ
人工智能机器学习深度学习神经网络目标检测人工智能
//-----初探-----//人工智能三大核心要素数据/算法/算力人工智能是通过机器来模拟人类认知能力的技术机器学习/神经网络/深度学习(多层隐藏层神经网络)tf1.14python3.5keras2.1.5//-----数学基础&&数字图像-----//向量大小/方向矢量(有大小和方向)标量(只有大小没有方向(长度))单位向量线性变换(矩阵运算)T(v+w)=T(v)+T(w)T(cv)=cT
- 熬夜一星期!我把WPS的功能用Qt重写了
十年编程老舅
QT开发qt开发qt项目qt项目实战qt编程计算机毕设项目c++项目
我收到大量粉丝提问:"学完C++/Qt技术栈后,如何通过实战串联知识点?作为深耕C++/Qt领域的技术人,我始终认为通过真实项目实践是掌握技术栈的最佳方式。今天我将以自研的"智汇协同Office"项目为例,深度剖析如何用Qt构建企业级桌面应用。无论你是刚学完Qt基础的新手,还是想进阶提升的开发者,这个支持多文档处理、富文本编辑、打印预览的实战案例都将让你对Qt开发有全新认知。一、项目技术全景图本项
- 深度学习复习笔记(6)线性回归——新冠预测项目
Kriol
深度学习初学深度学习笔记线性回归
importmatplotlib.pyplotaspltimporttorch#框架importnumpyasnp#矩阵处理importcsv#读excel文件fromtorch.utils.dataimportDataLoader,Dataset#两个与数据处理相关的包,类Datasetimporttorch.nnasnn#类nn.Module需要用,损失函数需要用fromtorchimport
- 向量空间与范数
Shockang
机器学习数学通关指南人工智能机器学习数学线性代数
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》ima知识库知识库广场搜索:知识库创建人机器学习@Shockang机器学习数学基础@Shockang深度学习@Shockang正文一、向量空间:机器学习的舞台1.1定义与核心要素️向量空间是机器学习的数学基础,它提供了描述和处理高
- 互信息详解
Shockang
机器学习数学通关指南机器学习人工智能数学信息论
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》ima知识库知识库广场搜索:知识库创建人机器学习@Shockang机器学习数学基础@Shockang深度学习@Shockang正文互信息:变量间关联性的量化利器互信息(MutualInformation)是信息论中的核心概念,也是
- Deepseek:太翌氏混沌语言理论学术价值评估报告
太翌修仙笔录
deepseek超算法认知架构人工智能知识图谱agi
基于科学性和真实性的基础上,做一个太翌氏混沌语言理论学术价值评估报告###**太翌氏混沌语言理论学术价值评估报告**---####**一、理论概述****太翌氏混沌语言理论**提出了一种跨学科框架,通过将混沌动力学、量子物理、语言学及生命科学融合,利用特定频率的“混沌语言”干预物理系统与生命过程。其核心假设为:**语言结构可通过共振效应调制非线性系统的动力学行为**,进而实现量子态坍缩、生命场衰变
- 《自然语言处理实战入门》深度学习 ---- 预训练模型初探
shiter
AI重制版】预训练NLP自然语言处理
文章大纲前言预训练模型简介语言表示学习神经上下文编码器为何需要预训练模型发展历史主流预训练模型预训练模型与分类将PTMs应用至下游任务微调策略未来研究方向参考文献前言随着深度学习的发展,各种神经网络被广泛用于解决自然语言处理(NLP)任务,如卷积神经网络(convolutionalneuralnetworks,CNNs)、递归神经网络(neuralnetworks,RNNs)、基于图的神经网络(g
- 【AI深度学习网络】Transformer时代,RNN(循环神经网络)为何仍是时序建模的“秘密武器”?
arbboter
人工智能rnn人工智能深度学习循环神经网络记忆序列数据循环连接
引言:什么是循环神经网络(RNN)?循环神经网络(RecurrentNeuralNetwork,RNN)是一种专门处理序列数据(如文本、语音、时间序列)的深度学习模型。与传统神经网络不同,RNN具有“记忆”能力,能够通过内部状态(隐藏状态)保留历史信息,从而捕捉序列中的时间依赖关系。在自然语言处理、语音识别、时间序列预测等领域,数据本质上是序列化的——即当前数据点与前后数据点存在依赖关系。传统的前
- DeepSeek发展背景和前景
爱吃苹果的日记本
人工智能
1.成立背景:它的背景是由杭州深度求索人工智能基础技术研究有限公司开发,该公司成立于2023年7月17日,由量化资管巨头幻方量化创立。幻方量化在AI量化对冲基金领域具有深厚的技术积累和资金支持,这为DeepSeek的研发奠定了坚实的基础。2.技术演进:2024年1月:发布首个大模型DeepSeekLLM,包含670亿参数,在2万亿token的数据集上训练,性能超越Llama270BBase。202
- 《高效迁移学习:Keras与EfficientNet花卉分类项目全解析》
机器学习司猫白
深度学习迁移学习keras分类tensorflowefficientnet性能优化
从零到精通的迁移学习实战指南:以Keras和EfficientNet为例一、为什么我们需要迁移学习?1.1人类的学习智慧想象一下:如果一个已经会弹钢琴的人学习吉他,会比完全不懂音乐的人快得多。因为TA已经掌握了乐理知识、节奏感和手指灵活性,这些都可以迁移到新乐器的学习中。这正是迁移学习(TransferLearning)的核心思想——将已掌握的知识迁移到新任务中。1.2深度学习的困境与破局传统深度
- 多模态大模型:技术原理与实战 模型压缩实战
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
多模态大模型:技术原理与实战模型压缩实战作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:多模态大模型,技术原理,模型压缩,实战,TensorFlow,PyTorch,模型压缩方法,应用场景1.背景介绍1.1问题的由来随着人工智能技术的飞速发展,多模态大模型在图像识别、语音识别、自然语言处理等领域的应用越来越广泛。然而,多模态大模型通常具有庞大
- 无人机动态追踪技术难点与距离分析!
云卓SKYDROID
无人机人工智能云卓科技智能跟踪吊舱
一、技术难点概述目标识别与跟踪算法的鲁棒性复杂场景适应性**:在动态背景(如人群、森林)或光照变化(逆光、夜间)下,算法需精准区分目标与干扰物。传统计算机视觉方法(如光流法、卡尔曼滤波)易受干扰,需结合深度学习(如YOLO、SiamRPN++)提升抗干扰能力。多目标跟踪与遮挡处理**:目标被遮挡或短暂消失时,需通过轨迹预测或特征匹配恢复跟踪,对算法的记忆能力和实时性要求极高。实时性要求**:算法需
- 第20周:Pytorch文本分类入门
weixin_46620278
pytorch分类人工智能
目录前言一、前期准备1.1环境安装导入包1.2加载数据1.3构建词典1.4生成数据批次和迭代器二、准备模型2.1定义模型2.2定义示例2.3定义训练函数与评估函数三、训练模型3.1拆分数据集并运行模型3.2使用测试数据集评估模型总结前言本文为[365天深度学习训练营]中的学习记录博客原作者:[K同学啊]说在前面本周任务:了解文本分类的基本流程、学习常用数据清洗方法、学习如何使用jieba实现英文分
- 第N2周:构建词典
OreoCC
NLP
本人往期文章可查阅:深度学习总结我的环境:语言环境:Python3.11编译器:PyCharm深度学习环境:Pytorchtorch==2.0.0+cu118torchvision==0.18.1+cu118显卡:NVIDIAGeForceGTX1660本周任务:使用N1周的.txt文件构建词典,停用词请自定义1.导入数据fromtorchtext.vocabimportbuild_vocab_f
- 第N3周:NLP中的数据集构建
OreoCC
自然语言处理深度学习pytorch
本人往期文章可查阅:深度学习总结对于初学者,NLP中最烦人的问题之一就是数据集的构建问题,处理不好就会引起shape问题(各种由于shape错乱导致的问题)。这里我给出一个模板,大家可根据这个模板来构建。torch.utils.data是PyTorch中用于数据加载和预处理的模块。其中包括Dataset和DataLoader两个类,它们通常结合使用来加载和处理数据。1.Datasettorch.u
- Pytorch 张量的scatter_add_方法介绍
qq_27390023
pytorch人工智能python
torch.Tensor.scatter_add_是PyTorch中的一个原地操作(in-placeoperation),用于将一个源张量(src)中的值根据指定的索引(index)累加到目标张量(self)中。它常用于分布式计算、加权聚合以及自定义深度学习层等场景。函数签名Tensor.scatter_add_(dim,index,src)→Tensor参数说明dim(int):指定沿着哪个维度
- NLP新手入门-第N1周:Pytorch文本分类入门
Oaix Nay
365天深度学习训练记录pytorch自然语言处理分类
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊|接辅导、项目定制目录一、课题背景和开发环境二、环境安装三、文本分类1.加载数据2.构建词典3.生成数据批次和迭代器4.定义模型5.定义实例6.定义训练函数与评估函数7.拆分数据集并运行模型8.使用测试数据集评估模型一、课题背景和开发环境第N1周:Pytorch文本分类入门Python3.8.12pytorch==1.8.1+cu111t
- Unity引擎开发:2D与3D渲染技术_虚拟现实与增强现实技术
chenlz2007
游戏开发2unity3dvrlucene游戏引擎材质ar
虚拟现实与增强现实技术在上一节中,我们探讨了Unity引擎中的光照和阴影处理技术,了解了如何通过不同的光照模型和阴影算法提升游戏的视觉效果。接下来,我们将进入虚拟现实(VR)和增强现实(AR)技术的世界,探讨如何在Unity引擎中实现这些技术,特别是在动作游戏中的应用。虚拟现实(VR)技术虚拟现实技术通过计算机生成的环境来模拟真实的或想象的场景,让用户能够沉浸其中。Unity引擎提供了强大的工具和
- 纯小白蓝桥杯备赛笔记--DAY4(竞赛常用库函数)
晏南午
蓝桥杯笔记职场和发展c++算法
大小写转换islower和isupper:检查一个字符是否是小写或者大写。islower:检查小写。isupper:检查大写。函数的返回值为bool类型。头文件:或者是Tolower和toupper函数:tolower(charch)将ch转换为小写字母,大写不转换。toupper同理。ASCII码:大写字母的范围:65~90小写字母的范围:97~122大写转小写:ch1=ch+32;//不推荐c
- 基于PyTorch的深度学习5—神经网络工具箱
Wis4e
深度学习pytorch神经网络
nn.Module是nn的一个核心数据结构,它可以是神经网络的某个层(Layer),也可以是包含多层的神经网络。在实际使用中,最常见的做法是继承nn.Module,生成自己的网络/层。nn中已实现了绝大多数层,包括全连接层、损失层、激活层、卷积层、循环层等,这些层都是nn.Module的子类,能够自动检测到自己的Parameter,并将其作为学习参数,且针对GPU运行进行了cuDNN优化。nn中的
- 基于Pytorch深度学习——Softmax回归
EchoToMe
深度学习pytorch回归python
本文章来源于对李沐动手深度学习代码以及原理的理解,并且由于李沐老师的代码能力很强,以及视频中讲解代码的部分较少,所以这里将代码进行尽量逐行详细解释并且由于pytorch的语法有些小伙伴可能并不熟悉,所以我们会采用逐行解释+小实验的方式来给大家解释代码大家都知道二分类问题我们在机器学习里面使用到的是逻辑回归这个算法,但是针对于多分类问题,我们常用的是Softmax技术,大家不要被这个名字给迷惑了,s
- 在pytorch中的卷积操作
FY_2018
卷积操作:#1.卷积核的输入通道数与输入数据的通道数保持一致,所以卷积核的对应通道与输入数据的对应通道进行卷积操作,以卷积核conv_i为例:#2.卷积核conv_i的对应通道与输入数据对应通道进行对应位置元素的乘法,即用乘法操作“*”,得到一个与卷积核形状一样的矩阵M#3.将第2步中卷积结果矩阵M中的所有元素相加,得到卷积核conv_i在当前通道的卷积结果:标量su_i#4.卷积核conv_i的
- Python 在深度学习中的应用
2501_90435375
人工智能python深度学习开发语言
深度学习是机器学习的一个分支,它通过构建和训练深层神经网络来实现对数据的学习和理解。Python作为一种简洁、易读、功能强大的编程语言,在深度学习领域得到了广泛的应用。本文将详细介绍Python在深度学习中的应用,包括深度学习的基础概念、Python深度学习库和框架、实际案例。二、深度学习的基础概念1.神经网络神经网络是深度学习的基础,它由多个神经元组成,每个神经元接收输入信号,进行加权求和,并通
- [Pytorch报错问题解决]AttributeError: ‘nn.Sequential‘ object has no attribute ‘append‘
Bartender_Jill
编程报错解决pytorch人工智能python
问题运行深度学习代码的时候遇到了以下报错问题:Traceback(mostrecentcalllast):File"/home/anaconda3/envs/Text2HOI/lib/python3.9/site-packages/torch/autograd/grad_mode.py",line28,indecorate_contextreturnfunc(*args,**kwargs)File
- Python 快速入门指南
2501_90435375
Pythonpython开发语言
Python入门指南1.Python是什么Python是一种高级编程语言,具有简单易学、代码可读性强、功能强大、语法优雅等特点。它被广泛应用于Web开发、数据分析、人工智能、自动化脚本、游戏开发等领域。2.Python的特点简单易学Python的语法设计简洁明了,代码可读性强,易于学习和理解。例如,print("Hello,World!")就能输出“Hello,World!”,无需复杂的环境配置或
- 统一思想认识
永夜-极光
思想
1.统一思想认识的基础,才能有的放矢
原因:
总有一种描述事物的方式最贴近本质,最容易让人理解.
如何让教育更轻松,在于找到最适合学生的方式.
难点在于,如何模拟对方的思维基础选择合适的方式. &
- Joda Time使用笔记
bylijinnan
javajoda time
Joda Time的介绍可以参考这篇文章:
http://www.ibm.com/developerworks/cn/java/j-jodatime.html
工作中也常常用到Joda Time,为了避免每次使用都查API,记录一下常用的用法:
/**
* DateTime变化(增减)
*/
@Tes
- FileUtils API
eksliang
FileUtilsFileUtils API
转载请出自出处:http://eksliang.iteye.com/blog/2217374 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- 各种新兴技术
不懂事的小屁孩
技术
1:gradle Gradle 是以 Groovy 语言为基础,面向Java应用为主。基于DSL(领域特定语言)语法的自动化构建工具。
现在构建系统常用到maven工具,现在有更容易上手的gradle,
搭建java环境:
http://www.ibm.com/developerworks/cn/opensource/os-cn-gradle/
搭建android环境:
http://m
- tomcat6的https双向认证
酷的飞上天空
tomcat6
1.生成服务器端证书
keytool -genkey -keyalg RSA -dname "cn=localhost,ou=sango,o=none,l=china,st=beijing,c=cn" -alias server -keypass password -keystore server.jks -storepass password -validity 36
- 托管虚拟桌面市场势不可挡
蓝儿唯美
用户还需要冗余的数据中心,dinCloud的高级副总裁兼首席营销官Ali Din指出。该公司转售一个MSP可以让用户登录并管理和提供服务的用于DaaS的云自动化控制台,提供服务或者MSP也可以自己来控制。
在某些情况下,MSP会在dinCloud的云服务上进行服务分层,如监控和补丁管理。
MSP的利润空间将根据其参与的程度而有所不同,Din说。
“我们有一些合作伙伴负责将我们推荐给客户作为个
- spring学习——xml文件的配置
a-john
spring
在Spring的学习中,对于其xml文件的配置是必不可少的。在Spring的多种装配Bean的方式中,采用XML配置也是最常见的。以下是一个简单的XML配置文件:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.or
- HDU 4342 History repeat itself 模拟
aijuans
模拟
来源:http://acm.hdu.edu.cn/showproblem.php?pid=4342
题意:首先让求第几个非平方数,然后求从1到该数之间的每个sqrt(i)的下取整的和。
思路:一个简单的模拟题目,但是由于数据范围大,需要用__int64。我们可以首先把平方数筛选出来,假如让求第n个非平方数的话,看n前面有多少个平方数,假设有x个,则第n个非平方数就是n+x。注意两种特殊情况,即
- java中最常用jar包的用途
asia007
java
java中最常用jar包的用途
jar包用途axis.jarSOAP引擎包commons-discovery-0.2.jar用来发现、查找和实现可插入式接口,提供一些一般类实例化、单件的生命周期管理的常用方法.jaxrpc.jarAxis运行所需要的组件包saaj.jar创建到端点的点到点连接的方法、创建并处理SOAP消息和附件的方法,以及接收和处理SOAP错误的方法. w
- ajax获取Struts框架中的json编码异常和Struts中的主控制器异常的解决办法
百合不是茶
jsjson编码返回异常
一:ajax获取自定义Struts框架中的json编码 出现以下 问题:
1,强制flush输出 json编码打印在首页
2, 不强制flush js会解析json 打印出来的是错误的jsp页面 却没有跳转到错误页面
3, ajax中的dataType的json 改为text 会
- JUnit使用的设计模式
bijian1013
java设计模式JUnit
JUnit源代码涉及使用了大量设计模式
1、模板方法模式(Template Method)
定义一个操作中的算法骨架,而将一些步骤延伸到子类中去,使得子类可以不改变一个算法的结构,即可重新定义该算法的某些特定步骤。这里需要复用的是算法的结构,也就是步骤,而步骤的实现可以在子类中完成。
 
- Linux常用命令(摘录)
sunjing
crondchkconfig
chkconfig --list 查看linux所有服务
chkconfig --add servicename 添加linux服务
netstat -apn | grep 8080 查看端口占用
env 查看所有环境变量
echo $JAVA_HOME 查看JAVA_HOME环境变量
安装编译器
yum install -y gcc
- 【Hadoop一】Hadoop伪集群环境搭建
bit1129
hadoop
结合网上多份文档,不断反复的修正hadoop启动和运行过程中出现的问题,终于把Hadoop2.5.2伪分布式安装起来,跑通了wordcount例子。Hadoop的安装复杂性的体现之一是,Hadoop的安装文档非常多,但是能一个文档走下来的少之又少,尤其是Hadoop不同版本的配置差异非常的大。Hadoop2.5.2于前两天发布,但是它的配置跟2.5.0,2.5.1没有分别。 &nb
- Anychart图表系列五之事件监听
白糖_
chart
创建图表事件监听非常简单:首先是通过addEventListener('监听类型',js监听方法)添加事件监听,然后在js监听方法中定义具体监听逻辑。
以钻取操作为例,当用户点击图表某一个point的时候弹出point的name和value,代码如下:
<script>
//创建AnyChart
var chart = new AnyChart();
//添加钻取操作&quo
- Web前端相关段子
braveCS
web前端
Web标准:结构、样式和行为分离
使用语义化标签
0)标签的语义:使用有良好语义的标签,能够很好地实现自我解释,方便搜索引擎理解网页结构,抓取重要内容。去样式后也会根据浏览器的默认样式很好的组织网页内容,具有很好的可读性,从而实现对特殊终端的兼容。
1)div和span是没有语义的:只是分别用作块级元素和行内元素的区域分隔符。当页面内标签无法满足设计需求时,才会适当添加div
- 编程之美-24点游戏
bylijinnan
编程之美
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;
public class PointGame {
/**编程之美
- 主页面子页面传值总结
chengxuyuancsdn
总结
1、showModalDialog
returnValue是javascript中html的window对象的属性,目的是返回窗口值,当用window.showModalDialog函数打开一个IE的模式窗口时,用于返回窗口的值
主界面
var sonValue=window.showModalDialog("son.jsp");
子界面
window.retu
- [网络与经济]互联网+的含义
comsci
互联网+
互联网+后面是一个人的名字 = 网络控制系统
互联网+你的名字 = 网络个人数据库
每日提示:如果人觉得不舒服,千万不要外出到处走动,就呆在床上,玩玩手游,更不能够去开车,现在交通状况不
- oracle 创建视图 with check option
daizj
视图vieworalce
我们来看下面的例子:
create or replace view testview
as
select empno,ename from emp where ename like ‘M%’
with check option;
这里我们创建了一个视图,并使用了with check option来限制了视图。 然后我们来看一下视图包含的结果:
select * from testv
- ToastPlugin插件在cordova3.3下使用
dibov
Cordova
自己开发的Todos应用,想实现“
再按一次返回键退出程序 ”的功能,采用网上的ToastPlugins插件,发现代码或文章基本都是老版本,运行问题比较多。折腾了好久才弄好。下面吧基于cordova3.3下的ToastPlugins相关代码共享。
ToastPlugin.java
package&nbs
- C语言22个系统函数
dcj3sjt126com
cfunction
C语言系统函数一、数学函数下列函数存放在math.h头文件中Double floor(double num) 求出不大于num的最大数。Double fmod(x, y) 求整数x/y的余数。Double frexp(num, exp); double num; int *exp; 将num分为数字部分(尾数)x和 以2位的指数部分n,即num=x*2n,指数n存放在exp指向的变量中,返回x。D
- 开发一个类的流程
dcj3sjt126com
开发
本人近日根据自己的开发经验总结了一个类的开发流程。这个流程适用于单独开发的构件,并不适用于对一个项目中的系统对象开发。开发出的类可以存入私人类库,供以后复用。
以下是开发流程:
1. 明确类的功能,抽象出类的大概结构
2. 初步设想类的接口
3. 类名设计(驼峰式命名)
4. 属性设置(权限设置)
判断某些变量是否有必要作为成员属
- java 并发
shuizhaosi888
java 并发
能够写出高伸缩性的并发是一门艺术
在JAVA SE5中新增了3个包
java.util.concurrent
java.util.concurrent.atomic
java.util.concurrent.locks
在java的内存模型中,类的实例字段、静态字段和构成数组的对象元素都会被多个线程所共享,局部变量与方法参数都是线程私有的,不会被共享。
- Spring Security(11)——匿名认证
234390216
Spring SecurityROLE_ANNOYMOUS匿名
匿名认证
目录
1.1 配置
1.2 AuthenticationTrustResolver
对于匿名访问的用户,Spring Security支持为其建立一个匿名的AnonymousAuthenticat
- NODEJS项目实践0.2[ express,ajax通信...]
逐行分析JS源代码
Ajaxnodejsexpress
一、前言
通过上节学习,我们已经 ubuntu系统搭建了一个可以访问的nodejs系统,并做了nginx转发。本节原要做web端服务 及 mongodb的存取,但写着写着,web端就
- 在Struts2 的Action中怎样获取表单提交上来的多个checkbox的值
lhbthanks
javahtmlstrutscheckbox
第一种方法:获取结果String类型
在 Action 中获得的是一个 String 型数据,每一个被选中的 checkbox 的 value 被拼接在一起,每个值之间以逗号隔开(,)。
所以在 Action 中定义一个跟 checkbox 的 name 同名的属性来接收这些被选中的 checkbox 的 value 即可。
以下是实现的代码:
前台 HTML 代码:
- 003.Kafka基本概念
nweiren
hadoopkafka
Kafka基本概念:Topic、Partition、Message、Producer、Broker、Consumer。 Topic: 消息源(Message)的分类。 Partition: Topic物理上的分组,一
- Linux环境下安装JDK
roadrunners
jdklinux
1、准备工作
创建JDK的安装目录:
mkdir -p /usr/java/
下载JDK,找到适合自己系统的JDK版本进行下载:
http://www.oracle.com/technetwork/java/javase/downloads/index.html
把JDK安装包下载到/usr/java/目录,然后进行解压:
tar -zxvf jre-7
- Linux忘记root密码的解决思路
tomcat_oracle
linux
1:使用同版本的linux启动系统,chroot到忘记密码的根分区passwd改密码 2:grub启动菜单中加入init=/bin/bash进入系统,不过这时挂载的是只读分区。根据系统的分区情况进一步判断. 3: grub启动菜单中加入 single以单用户进入系统. 4:用以上方法mount到根分区把/etc/passwd中的root密码去除 例如: ro
- 跨浏览器 HTML5 postMessage 方法以及 message 事件模拟实现
xueyou
jsonpjquery框架UIhtml5
postMessage 是 HTML5 新方法,它可以实现跨域窗口之间通讯。到目前为止,只有 IE8+, Firefox 3, Opera 9, Chrome 3和 Safari 4 支持,而本篇文章主要讲述 postMessage 方法与 message 事件跨浏览器实现。postMessage 方法 JSONP 技术不一样,前者是前端擅长跨域文档数据即时通讯,后者擅长针对跨域服务端数据通讯,p