You’ve got string s, consisting of small English letters. Some of the English letters are good, the rest are bad.
A substring s[l…r] (1 ≤ l ≤ r ≤ |s|) of string s = s1s2…s|s| (where |s| is the length of string s) is string slsl + 1…sr.
The substring s[l…r] is good, if among the letters sl, sl + 1, …, sr there are at most k bad ones (look at the sample’s explanation to understand it more clear).
Your task is to find the number of distinct good substrings of the given string s. Two substrings s[x…y] and s[p…q] are considered distinct if their content is different, i.e. s[x…y] ≠ s[p…q].
Input
The first line of the input is the non-empty string s, consisting of small English letters, the string’s length is at most 1500 characters.
The second line of the input is the string of characters “0” and “1”, the length is exactly 26 characters. If the i-th character of this string equals “1”, then the i-th English letter is good, otherwise it’s bad. That is, the first character of this string corresponds to letter “a”, the second one corresponds to letter “b” and so on.
The third line of the input consists a single integer k (0 ≤ k ≤ |s|) — the maximum acceptable number of bad characters in a good substring.
Output
Print a single integer — the number of distinct good substrings of string s.
Sample test(s)
Input
ababab
01000000000000000000000000
1
Output
5
Input
acbacbacaa
00000000000000000000000000
2
Output
8
Note
In the first example there are following good substrings: “a”, “ab”, “b”, “ba”, “bab”.
In the second example there are following good substrings: “a”, “aa”, “ac”, “b”, “ba”, “c”, “ca”, “cb”.
字符串hash,记录bad字符个数的前缀然后暴力枚举区间即可
/*************************************************************************
> File Name: CF-166-D.cpp
> Author: ALex
> Mail: [email protected]
> Created Time: 2015年04月01日 星期三 16时11分49秒
************************************************************************/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
const double pi = acos(-1.0);
const int inf = 0x3f3f3f3f;
const double eps = 1e-15;
typedef long long LL;
typedef pair <int, int> PLL;
static const int seed = 13331;
static const int N = 1600;
static const int HASH = 10000007;
char str[N];
char good[30];
int sum[N];
unsigned long long S[N];
unsigned long long P[N];
class HASHMAP
{
public:
int head[HASH];
int nxt[HASH];
int size;
unsigned long long state[HASH];
void init()
{
memset(head, -1, sizeof(head));
size = 0;
}
bool check(unsigned long long val)
{
int h = (val % HASH + HASH) % HASH;
for (int i = head[h]; ~i; i = nxt[i])
{
if (val == state[i])
{
return 1;
}
}
return 0;
}
void insert(unsigned long long val)
{
int h = (val % HASH + HASH) % HASH;
for (int i = head[h]; ~i; i = nxt[i])
{
if (state[i] == val)
{
return;
}
}
state[size] = val;
nxt[size] = head[h];
head[h] = size++;
}
}H;
int main()
{
P[0] = 1;
for (int i = 1; i <= 1500; ++i)
{
P[i] = P[i - 1] * seed;
}
int k;
while (~scanf("%s%s%d", str, good, &k))
{
S[0] = 0;
int n = strlen(str);
sum[0] = 0;
for (int i = 1; i <= n; ++i)
{
S[i] = S[i - 1] * seed + str[i - 1];
sum[i] = sum[i - 1] + (good[str[i - 1] - 'a'] == '0');
}
H.init();
int ans = 0;
for (int L = 1; L <= n; ++L)
{
for (int i = 1; i + L - 1 <= n; ++i)
{
unsigned long long val = S[i + L - 1] - S[i - 1] * P[L];
if (!H.check(val) && sum[i + L - 1] - sum[i - 1] <= k)
{
++ans;
H.insert(val);
}
}
}
printf("%d\n", ans);
}
return 0;
}