基于python的系统构建_如何用Python来搭建一个简单的推荐系统

在这篇文章中,我们会介绍如何用Python来搭建一个简单的推荐系统。

本文使用的数据集是MovieLens数据集,该数据集由明尼苏达大学的Grouplens研究小组整理。它包含1,10和2亿个评级。 Movielens还有一个网站,我们可以注册,撰写评论并获得电影推荐。接下来我们就开始实战演练。

在这篇文章中,我们会使用Movielens构建一个基于item的简易的推荐系统。在开始前,第一件事就是导入pandas和numPy。

import pandas as pd import numpy as np import warnings warnings.filterwarnings('ignore')

接下来,我们使用pandas read_csv()加载数据集。数据集由制表符分隔,所以我们将\ t传递给sep参数。然后,使用names参数传入列名。

df = pd.read_csv('u.data', sep='\t', names=['user_id','item_id','rating','titmestamp'])

接下来查看表头,检查一下正在处理的数据。

df.head()

如果我们能够看到电影的标题而不仅仅是ID,那再好不过了。之后加载电影标题并把它与此数据集合并。

movie_titles = pd.read_csv('Movie_Titles') movie_titles.head()

由于item_id列相同,我们可以在此列上合并这些数据集。

df = pd.merge(df, movie_titles, on='item_id') df.head()

数据集中的每一列分部

你可能感兴趣的:(基于python的系统构建)