[TOC]
还在为开发Flink流处理应用程序时无法像开发Spring Boot程序那么优雅的分层以及装配Bean而烦恼吗?
你可能面临如下苦恼:
开发的Flink流处理应用程序,业务逻辑全部写在Flink的操作符中,代码无法服用,无法分层
要是有一天它可以像开发Spring Boot程序那样可以优雅的分层,优雅的装配Bean,不需要自己new对象好了
可以使用各种Spring生态的框架,一些琐碎的逻辑不再硬编码到代码中。
GitHub最近超火的一款开源框架,懒松鼠Flink-Boot脚手架,该脚手架简直是Spring开发工程师的福音,完美融合Spring生态体系,再也不需要手动在Java类中创建臃肿的Java对象,简直是开发大型流处理应用程序的必不可少的工具。地址:懒松鼠Flink-Boot 脚手架由《深入理解Flink核心设计与实践原理》作者开发。
接口缓存
你的现状
static Map cache=new HashMap();
public String findUUID(FlowData flowData) {
String value=cache.get(flowData.getSubTestItem());
if(value==null)
{
String uuid=userMapper.findUUID(flowData);
cache.put(uuid,value);
return uuid;
}
return value;
}
你想要的是这样
@Cacheable(value = "FlowData.findUUID", key = "#flowData.subTestItem")
public String findUUID(FlowData flowData) {
return userMapper.findUUID(flowData);
}
重试机制
你的现状
public void insertFlow(FlowData flowData) {
try{
userMapper.insertFlow(flowData);
}Cache(Exception e)
{
Thread.sleep(10000);
userMapper.insertFlow(flowData);
}
}
你想要的是这样
@Retryable(value = Exception.class, maxAttempts = 3, backoff = @Backoff(delay = 2000L, multiplier = 1.5))
@Override
public void insertFlow(FlowData flowData) {
userMapper.insertFlow(flowData);
}
Bean校验
你的现状
if(flowData.getSubTestItem().length()<2&&flowData.getSubTestItem().length()>7)
{
return null;
}
if(flowData.getBillNumber()==null)
{
return null;
}
你想要的是这样
Map validate = ValidatorUtil.validate(flowData);
if (validate != null) {
System.out.println(validate);
return null;
}
public class FlowData {
private String uuid;
//声明该参数的校验规则字符串长度必须在7到20之间
@Size(min = 7, max = 20, message = "长度必须在{min}-{max}之间")
private String subTestItem;
//声明该参数的校验规则字符串不能为空
@NotBlank(message = "billNumber不能为空")
private String billNumber;
}
等等......
GitHub最近超火的一款开源框架,懒松鼠Flink-Boot脚手架,该脚手架简直是Spring开发工程师的福音,完美融合Spring生态体系,再也不需要手动在Java类中创建臃肿的Java对象,简直是开发大型流处理应用程序的必不可少的工具。懒松鼠Flink-Boot 脚手架由《深入理解Flink核心设计与实践原理》作者开发。
它为流计算开发工程师解决了
将所有对象的创建和依赖关系的维护工作都交给Spring容器的管理,降低了对象之间的耦合性,使代码变得更简洁,拒绝臃肿。
消除在工程中对单例的过多使用。
声明式事务处理,通过配置就可以完成对事物的管理,而无须手动编程。
声明式注解,可以通过注解定义方法的缓冲功能,无序手动编程。
注解式定义Bean对象的校验规则,通过注解即可完成对对象的参数校验,无序手动编程。
集成MyBatis ORM框架,注解式维护实例对象的依赖关系。
解耦Flink SQL,SQL语句剥离出JAVA文件,以简洁的模式表现在XML文件中。
封装Flink API,仅提供业务方法去编写,Spring生态融合全部搞定,无需操心。
有了它你的代码就像这样子:
/**
* github地址: https://github.com/intsmaze
* 博客地址:https://www.cnblogs.com/intsmaze/
* 出版书籍《深入理解Flink核心设计与实践原理》 随书代码
* RichFlatMapFunction为Flink框架的一个通用型操作符(算子),开发者一般在该算子的flatMap方法中编写业务逻辑
* @auther: intsmaze(刘洋)
* @date: 2020/10/15 18:33
*/
public class MybatisFlatMap extends RichFlatMapFunction {
private static Gson gson = new GsonBuilder().setDateFormat("yyyy-MM-dd HH:mm:ss").create();
protected ApplicationContext beanFactory;
//mybatis的Service对象,操作数据库的user表
private UserService userService;
@Override
public void open(Configuration parameters) {
ExecutionConfig.GlobalJobParameters globalJobParameters = getRuntimeContext()
.getExecutionConfig().getGlobalJobParameters();
beanFactory = BeanFactory.getBeanFactory((Configuration) globalJobParameters);
userService = beanFactory.getBean(UserServiceImpl.class);
}
@Override
public void flatMap(String value, Collector out){
FlowData flowData = gson.fromJson(message, new TypeToken() {
}.getType());
Map validate = ValidatorUtil.validate(flowData);
if (validate != null) {
System.out.println(validate);
return null;
}
//数据库查询,屏蔽掉获取数据库连接,是否数据库连接,事务的声明等
String flowUUID = userService.findUUID(flowData);
if (StringUtils.isBlank(flowUUID)) {
flowUUID = UUID.randomUUID().toString();
flowData.setUuid(flowUUID);
//数据库插入,屏蔽掉获取数据库连接,是否数据库连接,事务的声明等
userService.insertFlow(flowData);
}
out.collect(gson.toJson(flowData));
}
}
public interface UserService {
String findUUID(FlowData flowData);
void insertFlow(FlowData flowData);
}
//通过注解实例化Bean对象。
@Service
//通过注解声明进行事务管理
@Transactional
//通过注解声明方法具有异常重试机制
@EnableRetry
public class UserServiceImpl implements UserService {
//通过注解进行依赖注入
@Resource
private UserMapper userMapper;
@Cacheable(value = "FlowData.findUUID", key = "#flowData.subTestItem")
@Override
public String findUUID(FlowData flowData) {
return userMapper.findUUID(flowData);
}
//通过注解声明该方法异常后的重试机制,无需手动编程
@Retryable(value = Exception.class, maxAttempts = 3, backoff = @Backoff(delay = 2000L, multiplier = 1.5))
@Override
public void insertFlow(FlowData flowData) {
userMapper.insertFlow(flowData);
}
}
public interface UserMapper {
String findUUID(FlowData flowData);
void insertFlow(FlowData flowData);
}
//注解式声明参数校验规则
public class FlowData {
private String uuid;
//声明该参数的校验规则字符串长度必须在7到20之间
@Size(min = 7, max = 20, message = "长度必须在{min}-{max}之间")
private String subTestItem;
//声明该参数的校验规则字符串不能为空
@NotBlank(message = "billNumber不能为空")
private String billNumber;
@NotBlank(message = "barcode不能为空")
private String barcode;
private String flowName;
private String flowStatus;
......
}
仓库地址:懒松鼠Flink-Boot
仓库地址:懒松鼠Flink-Boot脚手架由《深入理解Flink核心设计与实践原理》作者开发。
该脚手架屏蔽掉组装Flink API细节,让跨界变得简单,使得开发者能以传统Java WEB模式的开发方式开发出具备分布式计算能力的流处理程序。
开发者完全不需要理解分布式计算的理论知识和Flink框架的细节,便可以快速编写业务代码实现。
为了进一步提升开发者使用该脚手架开发大型项目的敏捷的程度,该脚手架工程默认集成Spring框架进行Bean管理,同时将微服务以及WEB开发领域中经常用到的框架集成进来,进一步提升开发速度。
除此之外针对目前流行的各大Java框架,该Flink脚手架工程也进行了集成,加快开发人员的编码速度,比如:
集成Jbcp-template对Mysql,Oracle,SQLServer等关系型数据库的快速访问。
集成Hibernate Validator框架进行参数校验。
集成Spring Retry框架进行重试标志。
集成Mybatis框架,提高对关系型数据库增,删,改,查的开发速度。
集成Spring Cache框架,实现注解式定义方法缓存。
......
1. 组织结构
Flink-Boot
├── Flink-Base -- Flink-Boot工程基础模块
├── Flink-Client -- Flink-Boot 客户端模块
├── flink-annotation -- 注解生效模块
├── flink-mybatis -- mybatis orm模块
├── flink-retry -- 注解重试机制模式
├── flink-validate -- 校验模块
├── flink-sql -- Flink SQL解耦至XML配置模块
├── flink-cache-annotation -- 接口缓冲模块
├── flink-junit -- 单元测试模块
├── flink-apollo -- 阿波罗配置客户端模块
2. 技术选项和集成情况
技术 | 名称 | 状态 |
----|------|----
Spring Framework | 容器 | 已集成
Spring 基于XML方式配置Bean | 装配Bean | 已集成
Spring 基于注解方式配置Bean | 装配Bean | 已集成
Spring 基于注解声明方法重试机制 | Retry注解 | 已集成
Spring 基于注解声明方法缓存 | Cache注解 | 已集成
Hibernate Validator | 校验框架 | 已集成
Druid | 数据库连接池 | 已集成
MyBatis | ORM框架 | 已集成
Kafka | 消息队列 | 已集成
HDFS | 分布式文件系统 | 已集成
Log4J | 日志组件 | 已集成
Junit | 单元测试 | 已集成
Mybatis-Plus | MyBatis扩展包 | 进行中
PageHelper | MyBatis物理分页插件 | 进行中
ZooKeeper | 分布式协调服务 | 进行中
Dubbo | 分布式服务框架 | 进行中
Redis | 分布式缓存数据库 | 进行中
Solr & Elasticsearch | 分布式全文搜索引擎 | 进行中
Ehcache | 进程内缓存框架 | 进行中
sequence | 分布式高效ID生产 | 进行中
Dubbole消费者 | 服务消费者 | 进行中
Spring eurake消费者 | 服务消费者 | 进行中
Apollo配置中心 | 携程阿波罗配置中心 | 进行中
Spring Config配置中心 | Spring Cloud Config配置中心 | 进行中
3. 快速开始
下面是集成Spring生态的基础手册.
3.1 核心基础工程
-
flink-base :基础工程,封装了开发Flink工程的必须参数,同时集成Spring容器,为后续集成Spring各类框架提供了支撑。
可以在本地开发环境和Flink集群运行环境中随意切换。
可以在增量检查点和全量检查点之间随意切换。
内置使用HDFS作为检查点的持久存储介质。
默认使用Kafka作为数据源
内置实现了任务的暂停机制-达到任务仍在运行但不再接收Kafka数据源中的数据,代替了停止任务后再重新部署任务这一繁琐流程。
flink-client:业务工程,该工程依赖flink-base工程,开发任务在该工程中进行业务逻辑的开发。
3.2 Spring容器
该容器模式配置了JdbcTemplate实例,数据库连接池采用Druid,在业务方法中只需要获取容器中的JdbcTemplate实例便可以快速与关系型数据库进行交互,dataService实例封装了一些访问数据库表的方法。
topology-base.xml
config.properties
jdbc.user = intsmaze
jdbc.password = intsmaze
jdbc.url = jdbc:mysql://127.0.0.1:3306/flink-boot?useUnicode=true&characterEncoding=UTF-8
3.3 启动类示例
如下是SimpleClient(com.intsmaze.flink.client.SimpleClient)类的示例代码,该类继承了BaseFlink,可以看到对应实现的方法中分别设置如下:
public String getTopoName():定义本作业的名称。
public String getConfigName():定义本作业需要读取的spring配置文件的名称
public String getPropertiesName():定义本作业需要读取的properties配置文件的名称。
public void createTopology(StreamExecutionEnvironment builder):构造本作业的拓扑结构。
/**
* github地址: https://github.com/intsmaze
* 博客地址:https://www.cnblogs.com/intsmaze/
* 出版书籍《深入理解Flink核心设计与实践原理》 随书代码
*
* @auther: intsmaze(刘洋)
* @date: 2020/10/15 18:33
*/
public class SimpleClient extends BaseFlink {
public static void main(String[] args) throws Exception {
SimpleClient topo = new SimpleClient();
topo.run(ParameterTool.fromArgs(args));
}
@Override
public String getTopoName() {
return "SimpleClient";
}
@Override
public String getConfigName() {
return "topology-base.xml";
}
@Override
public String getPropertiesName() {
return "config.properties";
}
@Override
public void createTopology(StreamExecutionEnvironment builder) {
DataStream inputDataStrem = env.addSource(new SimpleDataSource());
DataStream processDataStream = inputDataStrem.flatMap(new SimpleFunction());
processDataStream.print("输出结果");
}
}
3.4 数据源
采用自定义数据源,用户需要编写自定义DataSource类,该类需要继承XXX抽象类,实现如下方法。
public abstract void open(StormBeanFactory beanFactory):获取本作业在Spring配置文件中配置的bean对象。
public abstract String sendMessage():本作业spout生成数据的方法,在该方法内编写业务逻辑产生源数据,产生的数据以String类型进行返回。
public class SimpleDataSource extends CommonDataSource {
private static Gson gson = new GsonBuilder().setDateFormat("yyyy-MM-dd HH:mm:ss").create();
......
@Override
public void open(Configuration parameters) throws Exception {
super.open(parameters);
...//构造读取各类外部系统数据的连接实例
}
@Override
public String sendMess() throws InterruptedException {
Thread.sleep(1000);
......
MainData mainData = new MainData();
......//通过外部系统数据的连接实例读取外部系统数据,封装进MainData对象中,然后返回即可。
return gson.toJson(mainData);
}
}
3.5 业务逻辑实现
本作业计算的业务逻辑在Flink转换操作符中进行实现,一般来说开发者只需要实现flatMap算子即可以满足大部分算子的使用。
用户编写的自定义类需要继承com.intsmaze.flink.base.transform.CommonFunction抽象类,均需实现如下方法。
- public abstract String execute(String message):本作业业务逻辑计算的方法,参数message为Kafka主题中读取过来的参数,默认参数为String类型,如果需要将处理的数据发送给Kakfa主题中,则要通过return将处理的数据返回即可。
public class SimpleFunction extends CommonFunction {
private static Gson gson = new GsonBuilder().setDateFormat("yyyy-MM-dd HH:mm:ss").create();
@Override
public String execute(String message) throws Exception {
FlowData flowData = gson.fromJson(message, new TypeToken() {
}.getType());
String flowUUID = dataService.findUUID(flowData);
if (StringUtils.isBlank(flowUUID)) {
flowUUID = UUID.randomUUID().toString();
flowData.setUuid(flowUUID);
dataService.insertFlow(flowData);
}
return gson.toJson(flowData);
}
}
CommonFunction
CommonFunction抽象类中默认在open方法中通过BeanFactory对象获取到了Spring容器中对于的dataService实例,对于Spring中的其他实例同理在SimpleFunction类中的open方法中获取即可。
public abstract class CommonFunction extends RichFlatMapFunction {
private IntCounter numLines = new IntCounter();
protected DataService dataService;
protected ApplicationContext beanFactory;
@Override
public void open(Configuration parameters) {
getRuntimeContext().addAccumulator("num-FlatMap", this.numLines);
ExecutionConfig.GlobalJobParameters globalJobParameters = getRuntimeContext()
.getExecutionConfig().getGlobalJobParameters();
beanFactory = BeanFactory.getBeanFactory((Configuration) globalJobParameters);
dataService = beanFactory.getBean(DataService.class);
}
@Override
public void flatMap(String value, Collector out) throws Exception {
this.numLines.add(1);
String execute = execute(value);
if (StringUtils.isNotBlank(execute)) {
out.collect(execute);
}
}
public abstract String execute(String message) throws Exception;
}
可以根据情况选择重写open(Configuration parameters)方法,同时重写的open(Configuration parameters)方法的第一行要调用父类的open(Configuration parameters)方法。
public void open(Configuration parameters){
super.open(parameters);
......
//获取在Spring配置文件中配置的实例
XXX xxx=beanFactory.getBean(XXX.class);
}
3.6 集群/本地运行
在自定义的Topology类编写Main方法,创建自定义的Topology对象后,调用对象的run(...)方法。
public class SimpleClient extends BaseFlink {
/**
* 本地启动参数 -isLocal local
* 集群启动参数 -isIncremental isIncremental
*/
public static void main(String[] args) throws Exception {
SimpleClient topo = new SimpleClient();
topo.run(ParameterTool.fromArgs(args));
}
.......