学习自https://pytorch.org/tutorials/beginner/pytorch_with_examples.html
Pytorch Tensor在概念上和Numpy的array一样是一个 n n n维向量的。不过Tensor可以在GPU中进行计算,且可以跟踪计算图(computational graph)和梯度(gradients)。
我们用三次函数去拟合任意函数。
y ^ = a + b x + c x 2 + d x 3 \hat{y}=a+bx+cx^2+dx^3 y^=a+bx+cx2+dx3
定义损失函数 L = ∑ ( y − y ^ ) 2 L=\sum(y-\hat{y})^2 L=∑(y−y^)2
那么梯度为:
L : 2 ∗ ∑ ( y − y ^ ) L:2*\sum(y-\hat{y}) L:2∗∑(y−y^)
a : 2 ∗ ∑ ( y − y ^ ) a:2*\sum(y-\hat{y}) a:2∗∑(y−y^)
b : 2 ∗ x ∗ ∑ ( y − y ^ ) b:2*x*\sum(y-\hat{y}) b:2∗x∗∑(y−y^)
c : 2 ∗ x 2 ∗ ∑ ( y − y ^ ) c:2*x^2*\sum(y-\hat{y}) c:2∗x2∗∑(y−y^)
d : 2 ∗ x 3 ∗ ∑ ( y − y ^ ) d:2*x^3*\sum(y-\hat{y}) d:2∗x3∗∑(y−y^)
代码
import torch
import math
dtype = torch.float
device = torch.device("cuda:0") # Run on GPU
# Create random input and output data
x = torch.linspace(-math.pi, math.pi, 2000, device=device,dtype=dtype)
y = torch.sin(x)
# Randomly initialize weights
a = torch.randn((), device=device, dtype=dtype)
b = torch.randn((), device=device, dtype=dtype)
c = torch.randn((), device=device, dtype=dtype)
d = torch.randn((), device=device, dtype=dtype)
learning_rate = 1e-6
for t in range(2000):
# Forward pass: compute predicted y
y_pred = a + b * x + c * x **2 + d *x ** 3
# Compute and print loss
loss = (y_pred - y).pow(2).sum().item()
if t % 100 == 99:
print(t, loss)
# Backprop to compute gradients of a, b, c, d with respect to loss
grad_y_pred = 2.0 * (y_pred - y)
grad_a = grad_y_pred.sum()
grad_b = (grad_y_pred * x).sum()
grad_c = (grad_y_pred * x ** 2).sum()
grad_d = (grad_y_pred * x ** 3).sum()
# Update weights using gradient descent
a -= learning_rate * grad_a
b -= learning_rate * grad_b
c -= learning_rate * grad_c
d -= learning_rate * grad_d
print(f'Result: y = {a.item()} + {b.item()} x + {c.item()} x^2 + {d.item()} x^3')
通过PyTorch: nn构建神经网络,如果我们需要一个三次函数来拟合,那么我们就需要一个隐藏层为1层,节点为3个的神经网络。
即 y ^ = ∑ i = 1 3 ( w i x i + b i ) \hat{y}=\sum_{i=1}^3(w_ix^i+b_i) y^=∑i=13(wixi+bi)
model = torch.nn.Sequential(
torch.nn.Linear(3, 1), #三个节点
torch.nn.Flatten(0, 1) # 把三个节点的结果加起来
)
由于我们的神经网络第一层有三个输入( x , x 2 , x 3 x,x^2,x^3 x,x2,x3),所以我们需要把数据预处理一下
x = torch.linspace(-math.pi, math.pi, 2000)
y = torch.sin(x)
p = torch.tensor([1, 2, 3])
xx = x.unsqueeze(-1).pow(p)
然后我们预测输出就可以直接调用model了
y_pred = model(xx) # y_pred也是一个tensor
损失函数
loss_fn = torch.nn.MSELoss(reduction='sum') # 定义,使用均方误差
loss = loss_fn(y_pred, y) # 计算均方误差
model.zero_grad() # 先把原先模型的梯度信息清零
loss.backward() # 计算反向传播的梯度
完整代码
import torch
import math
x = torch.linspace(-math.pi, math.pi, 2000)
y = torch.sin(x)
p = torch.tensor([1, 2, 3])
xx = x.unsqueeze(-1).pow(p)
model = torch.nn.Sequential(
torch.nn.Linear(3, 1),
torch.nn.Flatten(0, 1)
)
loss_fn = torch.nn.MSELoss(reduction='sum')
learning_rate = 1e-6
for t in range(2000):
y_pred = model(xx)
loss = loss_fn(y_pred, y)
if t % 100 == 99:
print(t, loss.item())
model.zero_grad()
loss.backward()
with torch.no_grad(): # 进行梯度下降
for param in model.parameters():
param -= learning_rate * param.grad
linear_layer = model[0]
print(f'Result: y = {linear_layer.bias.item()} + {linear_layer.weight[:, 0].item()} x + {linear_layer.weight[:, 1].item()} x^2 + {linear_layer.weight[:, 2].item()} x^3')