golang 源码剖析(6): 通道

简介(js)

通道(channel) 是Go实现CSP并发模型的关键, 鼓励用通信来实现数据共享。 Dont' communicate by sharing memory, share memory by communicating.
CSP: Communicating Sequential Process

创建

chan.go中 hchan的结构

type hchan struct {
    qcount   uint           // total data in the queue
    dataqsiz uint           // size of the circular queue
    buf      unsafe.Pointer // points to an array of dataqsiz elements
    elemsize uint16
    closed   uint32
    elemtype *_type // element type
    sendx    uint   // send index
    recvx    uint   // receive index
    recvq    waitq  // list of recv waiters
    sendq    waitq  // list of send waiters

    // lock protects all fields in hchan, as well as several
    // fields in sudogs blocked on this channel.
    //
    // Do not change another G's status while holding this lock
    // (in particular, do not ready a G), as this can deadlock
    // with stack shrinking.
    lock mutex
}

type waitq struct {
    first *sudog
    last  *sudog
}

makechan: 这里先做了一些元素大小,队列大小检查。受垃圾回收器的限制,如果包含指针类型,则缓冲槽需单独分配内存,否则可一次性分配,调整buf的指针,最后设置size等属性

func makechan(t *chantype, size int) *hchan {
    elem := t.elem
    // compiler checks this but be safe.
    if elem.size >= 1<<16 { //限制chan的元素大小
        throw("makechan: invalid channel element type")
    }
    mem, overflow := math.MulUintptr(elem.size, uintptr(size)) //检查是否溢出
    if overflow || mem > maxAlloc-hchanSize || size < 0 {
        panic(plainError("makechan: size out of range"))
    }
    var c *hchan
    switch {
    case mem == 0:
        // Queue or element size is zero.
        c = (*hchan)(mallocgc(hchanSize, nil, true))
        // Race detector uses this location for synchronization.
        c.buf = c.raceaddr()
    case elem.ptrdata == 0:
        // Elements do not contain pointers.
        // Allocate hchan and buf in one call.
        c = (*hchan)(mallocgc(hchanSize+mem, nil, true))
        c.buf = add(unsafe.Pointer(c), hchanSize)
    default:
        // Elements contain pointers.
        c = new(hchan)
        c.buf = mallocgc(mem, elem, true)
    }

收发

这里用sudog用来保存收发队列,其中包含一个元素和g的指针,这里也实现了cache,central那一套缓存体系.
acquireSudog获取sudog和releaseSudog释放sudog, 大致流程也是先从本地p获取,接着再去sched.sudogcache中获取.

type sudog struct {
    g *g
    elem     unsafe.Pointer // data element (may point to stack)
}
type p struct {
    sudogcache []*sudog
    sudogbuf   [128]*sudog
}
type schedt struct {
    // Central cache of sudog structs.
    sudoglock  mutex
    sudogcache *sudog
}

发送

在go1.13的源码中已经不判断c.dataqsiz==0, 也就是将缓冲长度的0的大于0的整合在一起了。
如果block=false: 如果通道为nil, 则直接返回false. 对于无缓冲的情况,如果没有接收者会直接return false。 如果有缓冲但是缓冲满了也会return false。

如果通道关闭了,会触发panic。
尝试等待队列c.recvq中有等待者的话, 就直接将数据复制到sg.elem(如果是带缓冲的则更新缓冲的index等参数),并唤醒对应的groutine。

如果没有等待者,并且缓冲队列能存下,则获取一个sudog之后将数据放入sendq并返回

如果缓冲队列存不下,则调用goparkunlock然当前goroutine休眠,直到被goready唤醒,然后释放当前的sudog

// entry point for c <- x from compiled code
//go:nosplit
func chansend1(c *hchan, elem unsafe.Pointer) {
    chansend(c, elem, true, getcallerpc())
}
func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) {
    if c == nil {
        if !block {
            return false
        }
        gopark(nil, nil, waitReasonChanSendNilChan, traceEvGoStop, 2)
        throw("unreachable")
    }
    if !block && c.closed == 0 && ((c.dataqsiz == 0 && c.recvq.first == nil) ||
        (c.dataqsiz > 0 && c.qcount == c.dataqsiz)) {
        return false
    }
    if c.closed != 0 {
        unlock(&c.lock)
        panic(plainError("send on closed channel"))
    }
    if sg := c.recvq.dequeue(); sg != nil {
        // Found a waiting receiver. We pass the value we want to send
        // directly to the receiver, bypassing the channel buffer (if any).
        send(c, sg, ep, func() { unlock(&c.lock) }, 3)
        return true
    }
    if c.qcount < c.dataqsiz {
        // Space is available in the channel buffer. Enqueue the element to send.
        qp := chanbuf(c, c.sendx)
        if raceenabled {
            raceacquire(qp)
            racerelease(qp)
        }
        typedmemmove(c.elemtype, qp, ep)
        c.sendx++
        if c.sendx == c.dataqsiz {
            c.sendx = 0
        }
        c.qcount++
        unlock(&c.lock)
        return true
    }
}

接收

接收类似,但是在通道关闭并且缓冲中无数据时,会返回一个默认值。
故而在通道关闭之后还是能获取到一个值. 但是此时的返回中received变成了false

注意: 可能是由于如果队列满的话,可以直接将那块地址的数据做swap,才将有数据分为队列满不满的两种.在看select的时候判断条件有点让人不好理解.
在recv函数中, sg是sender,go 在这边的处理流程是sg := c.sendq.dequeue(),先从sendq中取出一个,如果sg不为nil,则调用recv(c, sg, ep, func() { unlock(&c.lock) }, 3)
在recv()中,如果c.dataqsiz>0,也就是带缓冲chan,将调用typedmemmove(c.elemtype, ep, qp) 把queue的数据复制给ep,然后调用typedmemmove(c.elemtype, qp, sg.elem)将sg.elem(也就是pop出来的sender)的数据复制给qp

func recv(c *hchan, sg *sudog, ep unsafe.Pointer, unlockf func(), skip int) {
    if c.dataqsiz == 0 {
    } else {
        // Queue is full. Take the item at the
        // head of the queue. Make the sender enqueue
        // its item at the tail of the queue. Since the
        // queue is full, those are both the same slot.
        qp := chanbuf(c, c.recvx)
        if raceenabled {
            raceacquire(qp)
            racerelease(qp)
            raceacquireg(sg.g, qp)
            racereleaseg(sg.g, qp)
        }
        // copy data from queue to receiver
        if ep != nil {
            typedmemmove(c.elemtype, ep, qp)
        }
        // copy data from sender to queue
        typedmemmove(c.elemtype, qp, sg.elem)
        c.recvx++
        if c.recvx == c.dataqsiz {
            c.recvx = 0
        }
        c.sendx = c.recvx // c.sendx = (c.sendx+1) % c.dataqsiz
    }
}
    if c.closed != 0 && c.qcount == 0 {
        if raceenabled {
            raceacquire(c.raceaddr())
        }
        unlock(&c.lock)
        if ep != nil {
            typedmemclr(c.elemtype, ep)
        }
        return true, false
    }

关闭

  • 关闭nil chan,或者重复关闭会 panic
  • 将c.closed 置为1
  • 循环pop c.recvq和c.sendq, 清空其数据,将gp.param置为nil, 最后都放入glist中
  • 轮训glist, 将所有接收和发送者都唤醒
  • 并未清理本身的buf
func closechan(c *hchan) {
    if c == nil {
        panic(plainError("close of nil channel"))
    }
    lock(&c.lock)
    if c.closed != 0 {
        unlock(&c.lock)
        panic(plainError("close of closed channel"))
    }
    c.closed = 1
    // release all readers
    for {
        sg := c.recvq.dequeue()
        if sg == nil {
            break
        }
        if sg.elem != nil {
            typedmemclr(c.elemtype, sg.elem)
            sg.elem = nil
        }
        if sg.releasetime != 0 {
            sg.releasetime = cputicks()
        }
        gp := sg.g
        gp.param = nil
        if raceenabled {
            raceacquireg(gp, c.raceaddr())
        }
        glist.push(gp)
    }
    // release all writers (they will panic)
    for {
        sg := c.sendq.dequeue()
        if sg == nil {
            break
        }
        sg.elem = nil
        if sg.releasetime != 0 {
            sg.releasetime = cputicks()
        }
        gp := sg.g
        gp.param = nil
        if raceenabled {
            raceacquireg(gp, c.raceaddr())
        }
        glist.push(gp)
    }
    unlock(&c.lock)
    // Ready all Gs now that we've dropped the channel lock.
    for !glist.empty() {
        gp := glist.pop()
        gp.schedlink = 0
        goready(gp, 3)
    }
}

select

在go1.13的源码中,runtime/select.go中已经没有newselect方法了,
select的处理移到了src/cmd/compile/internal/gc/select.go中. 大概看看注释就好了,不然就涉及到编译的过程了
在编译的时候,会遍历所有的节点,生成节点树,这是如果是OSELECT的话,则会调用walkselect,
walkselectcases中。对Node这个对象就不研究了

  1. 如果len(cases),则会生成一个调用block()的node
  2. 如果len(cases)==1: 生成节点,mkcall("block", nil, &ln)大概就是会一直等待这个并一直堵塞,这也大概能解释当只设置一个case是个发送chan时,recv数据都能收到,如果加上default,则有的数据可能会丢失(毕竟堵着的话会跳到default或者别的)
  3. 如果len(cases)==2:会遍历所有cases.
  4. 最后给这个list加上selectgo的调用
// The result of walkstmt MUST be assigned back to n, e.g.
//  n.Left = walkstmt(n.Left)
func walkstmt(n *Node) *Node {
    case OSELECT:
        walkselect(n)
}
func walkselect(sel *Node) {
}
func walkselectcases(cases *Nodes) []*Node {
    if n == 0 {
        return []*Node{mkcall("block", nil, nil)}
    }

    // optimization: one-case select: single op.
    // TODO(rsc): Reenable optimization once order.go can handle it.
    // golang.org/issue/7672.
    if n == 1 {}

    // convert case value arguments to addresses.
    // this rewrite is used by both the general code and the next optimization.
    for _, cas := range cases.Slice() {}

    // optimization: two-case select but one is default: single non-blocking op.
    if n == 2 && (cases.First().Left == nil || cases.Second().Left == nil) {}
    // generate sel-struct
    selv := temp(types.NewArray(scasetype(), int64(n)))
    order := temp(types.NewArray(types.Types[TUINT16], 2*int64(n)))

    // register cases
    for i, cas := range cases.Slice() {
        setField("kind", nodintconst(kind))
    if c != nil {
            c = convnop(c, types.Types[TUNSAFEPTR])
            setField("c", c)
        }
        if elem != nil {
            elem = convnop(elem, types.Types[TUNSAFEPTR])
            setField("elem", elem)
        }
        if instrumenting {
            r = mkcall("selectsetpc", nil, nil, bytePtrToIndex(selv, int64(i)))
            init = append(init, r)
        }
    fn := syslook("selectgo")
    r.Rlist.Set1(mkcall1(fn, fn.Type.Results(), nil, bytePtrToIndex(selv, 0), bytePtrToIndex(order, 0), nodintconst(int64(n))))
}

selectgo就是go总select语句的实现了

  1. 转类型成scases,pollorder,lockorder三个数组
  2. 将nil channel的scase统一成scase{},也就是caseNil类型方便处理
  3. 遍历case, 用fastrandn随机生成一个j,交换i,j的数据放到交换后的pollorder数组中
  4. 根据hchan的地址获得locking order(锁的顺序),使用简单堆排序来保证nlogn时间和常熟堆栈足迹
  5. 设置锁,将所有的chan锁住
  6. 开始遍历选择
    • 第一轮,按照pollorder,查找是否有已经在等待的,如果未找到,则看是否有caseDefault,有的话执行默认,然后返回. 这里对通道的检查, 如果所有的数据都堵塞(进不去,或者出不来) 则进入第二轮
    • 第二轮,将所有的chan都入队列。 caseRecv入c.recvq,caseSend入sendq,将当前G休眠等待被某一个chan唤醒(selparkcommit会将unlock所有chan)
    • 第三轮, 轮训所有的case,将原先入队的数据全部dequeue,从queue中移除,并返回casei, 也就是获取到数据的case位置,
      然后判断,cas是不是nil, 因为有可能是close(chan)事件唤醒的,这时就需要再次loop,当然如果还是判断到closed的这个case, 这里就会返回默认值然后退出。
      这里比较重要的一个是:
  1. 如果chan是nil,则分支永远走不到。 如果chan是closed,那么只要轮到(由于算法的随机,可能有别的chan先走到)肯定都能进去
type scase struct {
    c           *hchan         // chan
    elem        unsafe.Pointer // data element
    kind        uint16
    pc          uintptr // race pc (for race detector / msan)
    releasetime int64
}
// selectgo implements the select statement.
//
// cas0 points to an array of type [ncases]scase, and order0 points to
// an array of type [2*ncases]uint16. Both reside on the goroutine's
// stack (regardless of any escaping in selectgo).
func selectgo(cas0 *scase, order0 *uint16, ncases int) (int, bool) {
    // 将cas0和order0都转为数组
    cas1 := (*[1 << 16]scase)(unsafe.Pointer(cas0))
    order1 := (*[1 << 17]uint16)(unsafe.Pointer(order0))

        //转为slice,并拆分为pollorder和lockorder
    scases := cas1[:ncases:ncases]
    pollorder := order1[:ncases:ncases]
    lockorder := order1[ncases:][:ncases:ncases]

    // 遍历,将所有chan为nil的都改为scase{} 
    // Replace send/receive cases involving nil channels with
    // caseNil so logic below can assume non-nil channel.
    for i := range scases {
        cas := &scases[i]
        if cas.c == nil && cas.kind != caseDefault {
            *cas = scase{}
        }
    }
    // generate permuted order
    for i := 1; i < ncases; i++ {
        j := fastrandn(uint32(i + 1))
        pollorder[i] = pollorder[j]
        pollorder[j] = uint16(i)
    }
    // lock all the channels involved in the select
    sellock(scases, lockorder)
loop:
    // pass 1 - look for something already waiting
    // pass 2 - enqueue on all chans
    // wait for someone to wake us up
    // pass 3 - dequeue from unsuccessful chans
    selunlock(scases, lockorder)
    goto retc
}

其他

这里想到一个竞争的问题,也就是select阻塞时入了所有的chan列表,当多个chan都去唤醒时怎么保证这个竞争问题
ready这个函数中如果一个协程已经不是Gwaiting状态,再次设置则会报错.
解决的关键就在于selectDone这个参数
dequeue函数中, sgp.g.selectDone这个参数是原子性的,在入队时将其isSelect参数设置为true.
通过这个判断,和对selectDone改为1的过程中,如果改失败了则会跳过这个g,继续选择, 在select的处理逻辑中,当该协程唤醒后,会将select中的chan全部退回,这样就不会出现问题了。

// Mark runnable.
_g_ := getg()
mp := acquirem() // disable preemption because it can be holding p in a local var
if status&^_Gscan != _Gwaiting {
    dumpgstatus(gp)
    throw("bad g->status in ready")
}
func (q *waitq) dequeue() *sudog {
        if sgp.isSelect && !atomic.Cas(&sgp.g.selectDone, 0, 1) {
            continue
        }
}

你可能感兴趣的:(golang 源码剖析(6): 通道)