简介(js)
通道(channel) 是Go实现CSP并发模型的关键, 鼓励用通信来实现数据共享。 Dont' communicate by sharing memory, share memory by communicating.
CSP
: Communicating Sequential Process
创建
chan.go
中 hchan的结构
type hchan struct {
qcount uint // total data in the queue
dataqsiz uint // size of the circular queue
buf unsafe.Pointer // points to an array of dataqsiz elements
elemsize uint16
closed uint32
elemtype *_type // element type
sendx uint // send index
recvx uint // receive index
recvq waitq // list of recv waiters
sendq waitq // list of send waiters
// lock protects all fields in hchan, as well as several
// fields in sudogs blocked on this channel.
//
// Do not change another G's status while holding this lock
// (in particular, do not ready a G), as this can deadlock
// with stack shrinking.
lock mutex
}
type waitq struct {
first *sudog
last *sudog
}
makechan
: 这里先做了一些元素大小,队列大小检查。受垃圾回收器的限制,如果包含指针类型,则缓冲槽需单独分配内存,否则可一次性分配,调整buf的指针,最后设置size等属性
func makechan(t *chantype, size int) *hchan {
elem := t.elem
// compiler checks this but be safe.
if elem.size >= 1<<16 { //限制chan的元素大小
throw("makechan: invalid channel element type")
}
mem, overflow := math.MulUintptr(elem.size, uintptr(size)) //检查是否溢出
if overflow || mem > maxAlloc-hchanSize || size < 0 {
panic(plainError("makechan: size out of range"))
}
var c *hchan
switch {
case mem == 0:
// Queue or element size is zero.
c = (*hchan)(mallocgc(hchanSize, nil, true))
// Race detector uses this location for synchronization.
c.buf = c.raceaddr()
case elem.ptrdata == 0:
// Elements do not contain pointers.
// Allocate hchan and buf in one call.
c = (*hchan)(mallocgc(hchanSize+mem, nil, true))
c.buf = add(unsafe.Pointer(c), hchanSize)
default:
// Elements contain pointers.
c = new(hchan)
c.buf = mallocgc(mem, elem, true)
}
收发
这里用sudog用来保存收发队列,其中包含一个元素和g的指针,这里也实现了cache,central那一套缓存体系.
用acquireSudog
获取sudog和releaseSudog
释放sudog, 大致流程也是先从本地p获取,接着再去sched.sudogcache中获取.
type sudog struct {
g *g
elem unsafe.Pointer // data element (may point to stack)
}
type p struct {
sudogcache []*sudog
sudogbuf [128]*sudog
}
type schedt struct {
// Central cache of sudog structs.
sudoglock mutex
sudogcache *sudog
}
发送
在go1.13的源码中已经不判断c.dataqsiz==0
, 也就是将缓冲长度的0的大于0的整合在一起了。
如果block=false
: 如果通道为nil, 则直接返回false. 对于无缓冲的情况,如果没有接收者会直接return false。 如果有缓冲但是缓冲满了也会return false。
如果通道关闭了,会触发panic。
尝试等待队列c.recvq
中有等待者的话, 就直接将数据复制到sg.elem(如果是带缓冲的则更新缓冲的index等参数),并唤醒对应的groutine。
如果没有等待者,并且缓冲队列能存下,则获取一个sudog之后将数据放入sendq
并返回
如果缓冲队列存不下,则调用goparkunlock
然当前goroutine休眠,直到被goready
唤醒,然后释放当前的sudog
// entry point for c <- x from compiled code
//go:nosplit
func chansend1(c *hchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpc())
}
func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) {
if c == nil {
if !block {
return false
}
gopark(nil, nil, waitReasonChanSendNilChan, traceEvGoStop, 2)
throw("unreachable")
}
if !block && c.closed == 0 && ((c.dataqsiz == 0 && c.recvq.first == nil) ||
(c.dataqsiz > 0 && c.qcount == c.dataqsiz)) {
return false
}
if c.closed != 0 {
unlock(&c.lock)
panic(plainError("send on closed channel"))
}
if sg := c.recvq.dequeue(); sg != nil {
// Found a waiting receiver. We pass the value we want to send
// directly to the receiver, bypassing the channel buffer (if any).
send(c, sg, ep, func() { unlock(&c.lock) }, 3)
return true
}
if c.qcount < c.dataqsiz {
// Space is available in the channel buffer. Enqueue the element to send.
qp := chanbuf(c, c.sendx)
if raceenabled {
raceacquire(qp)
racerelease(qp)
}
typedmemmove(c.elemtype, qp, ep)
c.sendx++
if c.sendx == c.dataqsiz {
c.sendx = 0
}
c.qcount++
unlock(&c.lock)
return true
}
}
接收
接收类似,但是在通道关闭并且缓冲中无数据时,会返回一个默认值。
故而在通道关闭之后还是能获取到一个值. 但是此时的返回中received
变成了false
注意: 可能是由于如果队列满的话,可以直接将那块地址的数据做swap,才将有数据分为队列满不满的两种.在看select的时候判断条件有点让人不好理解.
在recv函数中, sg是sender,go 在这边的处理流程是sg := c.sendq.dequeue()
,先从sendq中取出一个,如果sg不为nil,则调用recv(c, sg, ep, func() { unlock(&c.lock) }, 3)
在recv()中,如果c.dataqsiz>0
,也就是带缓冲chan,将调用typedmemmove(c.elemtype, ep, qp)
把queue的数据复制给ep
,然后调用typedmemmove(c.elemtype, qp, sg.elem)
将sg.elem(也就是pop出来的sender)的数据复制给qp
func recv(c *hchan, sg *sudog, ep unsafe.Pointer, unlockf func(), skip int) {
if c.dataqsiz == 0 {
} else {
// Queue is full. Take the item at the
// head of the queue. Make the sender enqueue
// its item at the tail of the queue. Since the
// queue is full, those are both the same slot.
qp := chanbuf(c, c.recvx)
if raceenabled {
raceacquire(qp)
racerelease(qp)
raceacquireg(sg.g, qp)
racereleaseg(sg.g, qp)
}
// copy data from queue to receiver
if ep != nil {
typedmemmove(c.elemtype, ep, qp)
}
// copy data from sender to queue
typedmemmove(c.elemtype, qp, sg.elem)
c.recvx++
if c.recvx == c.dataqsiz {
c.recvx = 0
}
c.sendx = c.recvx // c.sendx = (c.sendx+1) % c.dataqsiz
}
}
if c.closed != 0 && c.qcount == 0 {
if raceenabled {
raceacquire(c.raceaddr())
}
unlock(&c.lock)
if ep != nil {
typedmemclr(c.elemtype, ep)
}
return true, false
}
关闭
- 关闭nil chan,或者重复关闭会 panic
- 将c.closed 置为1
- 循环pop c.recvq和c.sendq, 清空其数据,将gp.param置为nil, 最后都放入glist中
- 轮训glist, 将所有接收和发送者都唤醒
- 并未清理本身的
buf
func closechan(c *hchan) {
if c == nil {
panic(plainError("close of nil channel"))
}
lock(&c.lock)
if c.closed != 0 {
unlock(&c.lock)
panic(plainError("close of closed channel"))
}
c.closed = 1
// release all readers
for {
sg := c.recvq.dequeue()
if sg == nil {
break
}
if sg.elem != nil {
typedmemclr(c.elemtype, sg.elem)
sg.elem = nil
}
if sg.releasetime != 0 {
sg.releasetime = cputicks()
}
gp := sg.g
gp.param = nil
if raceenabled {
raceacquireg(gp, c.raceaddr())
}
glist.push(gp)
}
// release all writers (they will panic)
for {
sg := c.sendq.dequeue()
if sg == nil {
break
}
sg.elem = nil
if sg.releasetime != 0 {
sg.releasetime = cputicks()
}
gp := sg.g
gp.param = nil
if raceenabled {
raceacquireg(gp, c.raceaddr())
}
glist.push(gp)
}
unlock(&c.lock)
// Ready all Gs now that we've dropped the channel lock.
for !glist.empty() {
gp := glist.pop()
gp.schedlink = 0
goready(gp, 3)
}
}
select
在go1.13的源码中,runtime/select.go
中已经没有newselect方法了,
select的处理移到了src/cmd/compile/internal/gc/select.go
中. 大概看看注释就好了,不然就涉及到编译的过程了
在编译的时候,会遍历所有的节点,生成节点树,这是如果是OSELECT
的话,则会调用walkselect
,
walkselectcases
中。对Node这个对象就不研究了
- 如果len(cases),则会生成一个调用block()的node
- 如果len(cases)==1: 生成节点,
mkcall("block", nil, &ln)
大概就是会一直等待这个并一直堵塞,这也大概能解释当只设置一个case是个发送chan时,recv数据都能收到,如果加上default,则有的数据可能会丢失(毕竟堵着的话会跳到default或者别的) - 如果len(cases)==2:会遍历所有cases.
- 最后给这个list加上
selectgo
的调用
// The result of walkstmt MUST be assigned back to n, e.g.
// n.Left = walkstmt(n.Left)
func walkstmt(n *Node) *Node {
case OSELECT:
walkselect(n)
}
func walkselect(sel *Node) {
}
func walkselectcases(cases *Nodes) []*Node {
if n == 0 {
return []*Node{mkcall("block", nil, nil)}
}
// optimization: one-case select: single op.
// TODO(rsc): Reenable optimization once order.go can handle it.
// golang.org/issue/7672.
if n == 1 {}
// convert case value arguments to addresses.
// this rewrite is used by both the general code and the next optimization.
for _, cas := range cases.Slice() {}
// optimization: two-case select but one is default: single non-blocking op.
if n == 2 && (cases.First().Left == nil || cases.Second().Left == nil) {}
// generate sel-struct
selv := temp(types.NewArray(scasetype(), int64(n)))
order := temp(types.NewArray(types.Types[TUINT16], 2*int64(n)))
// register cases
for i, cas := range cases.Slice() {
setField("kind", nodintconst(kind))
if c != nil {
c = convnop(c, types.Types[TUNSAFEPTR])
setField("c", c)
}
if elem != nil {
elem = convnop(elem, types.Types[TUNSAFEPTR])
setField("elem", elem)
}
if instrumenting {
r = mkcall("selectsetpc", nil, nil, bytePtrToIndex(selv, int64(i)))
init = append(init, r)
}
fn := syslook("selectgo")
r.Rlist.Set1(mkcall1(fn, fn.Type.Results(), nil, bytePtrToIndex(selv, 0), bytePtrToIndex(order, 0), nodintconst(int64(n))))
}
selectgo
就是go总select语句的实现了
- 转类型成scases,pollorder,lockorder三个数组
- 将nil channel的scase统一成scase{},也就是
caseNil
类型方便处理 - 遍历case, 用
fastrandn
随机生成一个j,交换i,j的数据放到交换后的pollorder
数组中 - 根据hchan的地址获得locking order(锁的顺序),使用简单堆排序来保证nlogn时间和常熟堆栈足迹
- 设置锁,将所有的chan锁住
- 开始遍历选择
- 第一轮,按照pollorder,查找是否有已经在等待的,如果未找到,则看是否有caseDefault,有的话执行默认,然后返回. 这里对通道的检查, 如果所有的数据都堵塞(进不去,或者出不来) 则进入第二轮
- 第二轮,将所有的chan都入队列。 caseRecv入c.recvq,caseSend入sendq,将当前G休眠等待被某一个chan唤醒(
selparkcommit
会将unlock所有chan) - 第三轮, 轮训所有的case,将原先入队的数据全部dequeue,从queue中移除,并返回casei, 也就是获取到数据的case位置,
然后判断,cas是不是nil, 因为有可能是close(chan)事件唤醒的,这时就需要再次loop,当然如果还是判断到closed的这个case, 这里就会返回默认值然后退出。
这里比较重要的一个是:
- 如果chan是nil,则分支永远走不到。 如果chan是closed,那么只要轮到(由于算法的随机,可能有别的chan先走到)肯定都能进去
type scase struct {
c *hchan // chan
elem unsafe.Pointer // data element
kind uint16
pc uintptr // race pc (for race detector / msan)
releasetime int64
}
// selectgo implements the select statement.
//
// cas0 points to an array of type [ncases]scase, and order0 points to
// an array of type [2*ncases]uint16. Both reside on the goroutine's
// stack (regardless of any escaping in selectgo).
func selectgo(cas0 *scase, order0 *uint16, ncases int) (int, bool) {
// 将cas0和order0都转为数组
cas1 := (*[1 << 16]scase)(unsafe.Pointer(cas0))
order1 := (*[1 << 17]uint16)(unsafe.Pointer(order0))
//转为slice,并拆分为pollorder和lockorder
scases := cas1[:ncases:ncases]
pollorder := order1[:ncases:ncases]
lockorder := order1[ncases:][:ncases:ncases]
// 遍历,将所有chan为nil的都改为scase{}
// Replace send/receive cases involving nil channels with
// caseNil so logic below can assume non-nil channel.
for i := range scases {
cas := &scases[i]
if cas.c == nil && cas.kind != caseDefault {
*cas = scase{}
}
}
// generate permuted order
for i := 1; i < ncases; i++ {
j := fastrandn(uint32(i + 1))
pollorder[i] = pollorder[j]
pollorder[j] = uint16(i)
}
// lock all the channels involved in the select
sellock(scases, lockorder)
loop:
// pass 1 - look for something already waiting
// pass 2 - enqueue on all chans
// wait for someone to wake us up
// pass 3 - dequeue from unsuccessful chans
selunlock(scases, lockorder)
goto retc
}
其他
这里想到一个竞争的问题,也就是select阻塞时入了所有的chan列表,当多个chan都去唤醒时怎么保证这个竞争问题
ready这个函数中如果一个协程已经不是Gwaiting状态,再次设置则会报错.
解决的关键就在于selectDone
这个参数
在dequeue
函数中, sgp.g.selectDone这个参数是原子性的,在入队时将其isSelect参数设置为true.
通过这个判断,和对selectDone改为1的过程中,如果改失败了则会跳过这个g,继续选择, 在select的处理逻辑中,当该协程唤醒后,会将select中的chan全部退回,这样就不会出现问题了。
// Mark runnable.
_g_ := getg()
mp := acquirem() // disable preemption because it can be holding p in a local var
if status&^_Gscan != _Gwaiting {
dumpgstatus(gp)
throw("bad g->status in ready")
}
func (q *waitq) dequeue() *sudog {
if sgp.isSelect && !atomic.Cas(&sgp.g.selectDone, 0, 1) {
continue
}
}