Pascal Voc 2007 & 2012

1、简介

PASCAL 全称:Pattern Analysis, Statical Modeling and Computational Learning

PASCAL VOC(The PASCAL Visual Object Classes )是一个经典的计算机视觉数据集,由牛津大学、马里兰大学和微软剑桥研究院的研究人员创建的。 该数据集于2005年首次发布,从那时起就被用于训练和评估目标检测算法。

PASCAL VOC 从 2005年开始举办挑战赛,每年的内容都有所不同,主要包括:

  • 图像分类(Classification )
  • 目标检测(Detection)
  • 目标分割(Segmentation)
  • 人体布局(Human Layout)
  • 动作识别(Action Classification)

我们知道在 ImageNet挑战赛上涌现了一大批优秀的分类模型,而PASCAL挑战赛上则是涌现了一大批优秀的目标检测和分割模型,这项挑战赛已于2012年停止举办了,但是研究者仍然可以在其服务器上提交预测结果以评估模型的性能。

虽然近期的目标检测或分割模型更倾向于使用MS COCO数据集,但是这丝毫不影响 PASCAL VOC数据集的重要性,毕竟PASCAL对于目标检测或分割类型来说属于先驱者的地位。对于现在的研究者来说比较重要的两个年份的数据集是 PASCAL VOC 2007 与 PASCAL VOC 2012,这两个数据集频频在现在的一些检测或分割类的论文当中出现。


2、 官网地址

官网地址:http://host.robots.ox.ac.uk/pascal/VOC/
官方文档 : http://host.robots.ox.ac.uk/pascal/VOC/pubs/everingham10.pdf


3、数据集下载

1)下载方式一 :点击下方 链接直接下载

Pascal VOC 2007

  • 训练集和验证集 下载地址 : training/validation data (450MB tar file)
  • 测试集(图像 + 标注)下载地址: annotated test data (430MB tar file)
  • 测试集(仅标注文件)下载地址: annotation only (12MB tar file, no images)

Pascal VOC 2012

  • 训练集和验证集 下载地址: training/validation data (2GB tar file)
  • 测试集标注未公开

2)下载方式二 : 从官网下载

a、Pascal VOC 2007 数据集
点击链接 进入 Pascal VOC 2007 主页 : http://host.robots.ox.ac.uk/pascal/VOC/voc2007
在页面中找到如下 下载链接,点击进行下载

Pascal Voc 2007 & 2012_第1张图片
b、Pascal VOC 2012 数据集
点击链接 进入 Pascal VOC 2012 主页 : http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
在页面中找到如下 下载链接,点击进行下载
Pascal Voc 2007 & 2012_第2张图片


4、数据集的发展 与 20个类别

1)数据集的发展

Pascal Voc 2007 & 2012_第3张图片

对于 分类 和 检测 来说,下图所示为数据集的发展历程,相同颜色的代表相同的数据集:
在这里插入图片描述

  • 05年、06年、07年、08年数据集,为互斥的,独立的、完全不相同的数据集
  • 09年开始,所有数据集由前几年的部分图像 和 新图像组成
    09年的数据集 = 07年部分图像 + 08年部分图像 + 09年新图像
  • 10、11 年的数据集,均是在前一年的数据集上进行扩充
  • 12 年的数据集 和 11年的数据集一样

虽然 Pascal VOC 2012 和 2007 版本的数据集存在一些共享的部分,但是它们的图像和标注文件在细节上还是有所不同的,因此在使用数据集时需要注意版本和文件的正确匹配。

2)20个类别

对于 图像分类任务 和 目标检测任务,数据集有 20个类别 (4大类)

Pascal Voc 2007 & 2012_第4张图片

}
    "aeroplane": 1,
    "bicycle": 2,
    "bird": 3,
    "boat": 4,
    "bottle": 5,
    "bus": 6,
    "car": 7,
    "cat": 8,
    "chair": 9,
    "cow": 10,
    "diningtable": 11,
    "dog": 12,
    "horse": 13,
    "motorbike": 14,
    "person": 15,
    "pottedplant": 16,
    "sheep": 17,
    "sofa": 18,
    "train": 19,
    "tvmonitor": 20
}

5、数据分布与统计

1)Pascal VOC 2007

\quad \quad 官方地址

Pascal Voc 2007 & 2012_第5张图片


2)Pascal VOC 2012

\quad \quad 官方地址
Pascal Voc 2007 & 2012_第6张图片


6、数据集的使用

目前广大研究者们普遍使用的是 VOC2007和VOC2012数据集。
论文中针对 VOC2007和VOC2012 的具体用法有以下几种:

  • 只用VOC2007的trainval 训练,使用VOC2007的test测试
  • 只用VOC2012的trainval 训练,使用VOC2012的test测试,这种用法很少使用,因为大家都会结合VOC2007使用
  • 使用 VOC2007 的 train+val 和 VOC2012的 train+val 训练,然后使用 VOC2007的test测试,这个用法是论文中经常看到的 07+12 ,研究者可以自己测试在VOC2007上的结果,因为VOC2007的test是公开的。
  • 使用 VOC2007 的 train+val+test 和 VOC2012的 train+val训练,然后使用 VOC2012的test测试,这个用法是论文中经常看到的 07++12 ,这种方法需提交到VOC官方服务器上评估结果,因为VOC2012 test没有公布。
  • 先在 MS COCO 的 trainval 上预训练,再使用 VOC2007 的 train+val、 VOC2012的 train+val 微调训练,然后使用 VOC2007的test测试,这个用法是论文中经常看到的 07+12+COCO 。
  • 先在 MS COCO 的 trainval 上预训练,再使用 VOC2007 的 train+val+test 、 VOC2012的 train+val 微调训练,然后使用 VOC2012的test测试 ,这个用法是论文中经常看到的 07++12+COCO,这种方法需提交到VOC官方服务器上评估结果,因为VOC2012 test没有公布。

7、数据集结构

1)Pascal VOC 2007

.
└── VOCdevkit
    └── VOC2007
        ├── Annotations                 标注文件(图像分类、目标检测、人体布局)
        │   ├── 000005.xml
        │   ├── 000007.xml
        │   ├── 000009.xml
        │   └── ... (共 5011个标注文件)
        ├── ImageSets                   数据集分割信息 (训练集、验证集、训练集+验证集)
        │   ├── Layout                  用于人体布局图像信息
        │   │   ├── train.txt
        │   │   ├── trainval.txt
        │   │   └── val.txt
        │   ├── Main                    用于图像分类和目标检测图像信息
        │   │   ├── train.txt          
        │   │   ├── trainval.txt       
        │   │   ├── val.txt            
        │   │   └── ... (共63个文件)
        │   └── Segmentation            用于语义分割和实例分割图像信息
        │       ├── train.txt
        │       ├── trainval.txt
        │       └── val.txt
        ├── JPEGImages                  所有原图像
        │   ├── 000005.jpg
        │   ├── 000007.jpg
        │   ├── 000009.jpg
        │   └── ... (共5011张图像)
        ├── SegmentationClass           语义分割标注图像
        │   ├── 000032.png
        │   ├── 000033.png
        │   ├── 000039.png
        │   └── ... (共422张图像)
        └── SegmentationObject          实例分割标注图像
            ├── 000032.png
            ├── 000033.png
            ├── 000039.png
            └── ... (共422张图像)

2)Pascal VOC 2012

.
└── VOCdevkit
    └── VOC2012
        ├── Annotations                  标注文件(图像分类、目标检测、人体布局)
        │   ├── 2007_000027.xml
        │   ├── 2007_000032.xml
        │   ├── 2007_000033.xml
        │   ├── 2007_000039.xml
        │   └── ...(共17125张图像)
        ├── ImageSets                     数据集分割信息 (训练集、验证集、训练集+验证集)
        │   ├── Action                      用于动作识别
        │   │   ├── train.txt                2296张图像
        │   │   ├── trainval.txt             4588张图像
        │   │   ├── val.txt                  2292张图像
        │   │   └── ...
        │   ├── Layout                      用于人体布局
        │   │   ├── train.txt                4425张图像
        │   │   ├── trainval.txt             850张图像
        │   │   └── val.txt                  425张图像
        │   ├── Main                        用于图像分类和目标检测  
        │   │   ├── train.txt                5717张图像 
        │   │   ├── train_val.txt            11540张图像
        │   │   └── trainval.txt             5823张图像 
        │   └── Segmentation                用于语义分割和实例分割 
        │       ├── train.txt                 1464张图像
        │       ├── trainval.txt              2913张图像
        │       └── val.txt                   1449张图像
        ├── JPEGImages                     所有原图像
        │   ├── 2007_000027.jpg
        │   ├── 2007_000032.jpg
        │   ├── 2007_000033.jpg
        │   ├── 2007_000039.jpg
        │   └── ...(共17125张图像)
        ├── SegmentationClass              语义分割标注图像
        │   ├── 2007_000032.png
        │   ├── 2007_000033.png 
        │   ├── 2007_000039.png
        │   ├── 2007_000042.png
        │   └── ...(共2913张图像)
        └── SegmentationObject             实例分割标注图像
            ├── 2007_000032.png
            ├── 2007_000033.png
            ├── 2007_000039.png
            ├── 2007_000042.png
            └── ...(共2913张图像)

3)2007 和 2012 数据结构的区别

1、Pascal VOC 2012 的数据集 因为是在前几年的数据集上进行扩增,所以文件名中包含年份,而 Pascal VOC 2007 的文件名中不包含
- Pascal VOC 2007 的标注文件名 和 图像文件名 类似为: 000005.xml、 000005.jpg
- Pascal VOC 2012 的标注文件名 和 图像文件名 类似为: 2007_000027.xml、 2007_000039.png
2、Pascal VOC 2012 的 ImageSets 中包括 Action 文件:用于动作识别任务的数据集划分,而 Pascal VOC 2007 的 ImageSets 文件中不包含, 因为 动作识别任务(Action Classification) 是2010年才有的。
3、.xml 的标注文件内容 有所不同,比如: 12版本中有的图像标注 是有 动作信息


8、标注文件结构

(1)目标检测 标注文件 Annotation

<annotation>
        <folder>VOC2007folder>
        <filename>000001.jpgfilename>
        <source>
                <database>The VOC2007 Databasedatabase>
                <annotation>PASCAL VOC2007annotation>
                <image>flickrimage>
                <flickrid>341012865flickrid>
        source>
        <owner>
                <flickrid>Fried Camelsflickrid>
                <name>Jinky the Fruit Batname>
        owner>
        <size>
                <width>353width>
                <height>500height>
                <depth>3depth>
        size>
        <segmented>0segmented>
        <object>
                <name>dogname>
                <pose>Leftpose>
                <truncated>1truncated>
                <difficult>0difficult>
                <bndbox>
                        <xmin>48xmin>
                        <ymin>240ymin>
                        <xmax>195xmax>
                        <ymax>371ymax>
                bndbox>
        object>
        <object>
                <name>personname>
                <pose>Leftpose>
                <truncated>1truncated>
                <difficult>0difficult>
                <bndbox>
                        <xmin>8xmin>
                        <ymin>12ymin>
                        <xmax>352xmax>
                        <ymax>498ymax>
                bndbox>
        object>
annotation>
  • annotation:标注文件的根节点,包含了整个标注信息
  • folder:图像所在的文件夹名称
  • filename:图像的文件名
  • source:图像来源
  • owner:图像拥有者
  • size:图像的尺寸信息,包括宽度、高度、深度。
  • segmented:是否被分割标注过: 值为 0,未被过分割;值为 1,被分割标注。
  • object:图像中的一个物体,其中的 信息包括:
    • name:物体的类别名称, 20个类别
    • bndbox:物体的边界框信息,包括左上角和右下角的坐标
      • xmin:边界框左上角的 x 坐标
      • ymin:边界框左上角的 y 坐标
      • xmax:边界框右下角的 x 坐标
      • ymax:边界框右下角的 y 坐标
    • difficult:标记物体是否难以识别的标志,0 表示容易识别,1 表示难以识别
    • truncated:标记物体是否被截断:0 表示未被截断,1 表示被截断(比如在图片之外,或者被遮挡超过15%)
  • pose:标记物体的姿态,例如正面、侧面等

(2)语义分割标注图像 SegmentationClass

Pascal Voc 2007 & 2012_第7张图片

  • 背景部分的 标注像素值 为 0
  • 边界部分的标注像素值为 255
  • 难以分割的区域,例如有重叠物体或遮挡的区域,标注像素值为255
  • 被分割出的object 内部, 标注像素值为其类别索引。 比如,被分割的飞机部分的像素值为飞机类别索引值 1
}
    "aeroplane": 1,
    "bicycle": 2,
    "bird": 3,
    "boat": 4,
    "bottle": 5,
    "bus": 6,
    "car": 7,
    "cat": 8,
    "chair": 9,
    "cow": 10,
    "diningtable": 11,
    "dog": 12,
    "horse": 13,
    "motorbike": 14,
    "person": 15,
    "pottedplant": 16,
    "sheep": 17,
    "sofa": 18,
    "train": 19,
    "tvmonitor": 20
}

(3)实例分割标注图像 SegmentationObject

  • 背景部分的 标注像素值 为 0
  • 边界部分的标注像素值为 255
  • 难以分割的区域,例如有重叠物体或遮挡的区域,标注像素值为255
  • 被分割出的 object 内部,使用 物体实例的 ID 来标识它。物体实例的 ID :为该物体在 .xml 标注文件中的 index 。比如,在 .xml 标注文件中,排位第2个的 object,ID = 2,在标注图像中,该 object 的像素值,就为2

Pascal Voc 2007 & 2012_第8张图片


(4)人体布局 Human Layout

< /part> 标签 框起来的部分,就是人体布局的标签

<annotation>
    <folder>VOC2012folder>
    <filename>2007_000027.jpgfilename>
    <source>
       <database>The VOC2007 Databasedatabase>
       <annotation>PASCAL VOC2007annotation>
       <image>flickrimage>
    source>
    <size>
       <width>486width>
       <height>500height>
       <depth>3depth>
    size>
    <segmented>0segmented>
    <object>
       <name>personname>
       <pose>Unspecifiedpose>
       <truncated>0truncated>
       <difficult>0difficult>
       <bndbox>
          <xmin>174xmin>
          <ymin>101ymin>
          <xmax>349xmax>
          <ymax>351ymax>
       bndbox>
       <part>
          <name>headname>
          <bndbox>
             <xmin>169xmin>
             <ymin>104ymin>
             <xmax>209xmax>
             <ymax>146ymax>
          bndbox>
       part>
       <part>
          <name>handname>
          <bndbox>
             <xmin>278xmin>
             <ymin>210ymin>
             <xmax>297xmax>
             <ymax>233ymax>
          bndbox>
       part>
       <part>                    
          <name>footname>      
          <bndbox>               
             <xmin>273xmin>    
             <ymin>333ymin>    
             <xmax>297xmax>    
             <ymax>354ymax>    
          bndbox>              
       part>                   
       <part>
          <name>footname>
          <bndbox>
             <xmin>319xmin>
             <ymin>307ymin>
             <xmax>340xmax>
             <ymax>326ymax>
          bndbox>
       part>
    object>
annotation>

(5)动作识别 Action Classification

< /actions> 标签 框起来的部分,就是动作识别的标签

<annotation>
    <filename>2011_003279.jpgfilename>
    <folder>VOC2011folder>
    <object>
       <name>personname>
       <actions>                                     
          <jumping>0jumping>                       
          <other>0other>                           
          <phoning>0phoning>                       
          <playinginstrument>0playinginstrument>   
          <reading>0reading>                       
          <ridingbike>0ridingbike>                 
          <ridinghorse>0ridinghorse>               
          <running>0running>                       
          <takingphoto>0takingphoto>               
          <usingcomputer>0usingcomputer>           
          <walking>1walking>                       
       actions>                                    
       <bndbox>
          <xmax>188xmax>
          <xmin>109xmin>
          <ymax>500ymax>
          <ymin>307ymin>
       bndbox>
       <difficult>0difficult>
       <pose>Unspecifiedpose>
       <point>
          <x>153x>
          <y>374y>
       point>
    object>
    <segmented>0segmented>
    <size>
       <depth>3depth>
       <height>500height>
       <width>367width>
    size>
    <source>
       <annotation>PASCAL VOC2011annotation>
       <database>The VOC2011 Databasedatabase>
       <image>flickrimage>
    source>
annotation>

Pascal Voc 2007 & 2012_第9张图片


9、数据集解析 - 目标检测任务

将数据集转换为 yolo 格式 , YOLO 数据格式介绍: YOLO 数据集格式

import xml.etree.ElementTree as ET
import os


# voc的20个类别
classes = ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable',
           'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor']


def convert(size, bbox):
    x = (bbox[0] + bbox[1]) / 2.0
    y = (bbox[2] + bbox[3]) / 2.0
    w = bbox[1] - bbox[0]
    h = bbox[3] - bbox[2]
    x = x / size[0]
    w = w / size[0]
    y = y / size[1]
    h = h / size[1]
    return (x, y, w, h)


def convert_annotation(xml_file, save_file):

    # 保存yolo格式 的label 的 .txt 文件地址
    save_file = open(save_file, 'w')

    tree = ET.parse(xml_file)
    size = tree.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)

    for obj in tree.findall('object'):
        difficult = obj.find('difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult) == 1:
            continue
        cls_id = classes.index(cls) + 1   # 类别索引从1开始,类别0是背景
        bbox = obj.find('bndbox')
        b = (float(bbox.find('xmin').text),
             float(bbox.find('xmax').text),
             float(bbox.find('ymin').text),
             float(bbox.find('ymax').text))
        bb = convert((w, h), b)
        save_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
    save_file.close()


if __name__ == "__main__":
    # 数据集根目录地址
    data_root = "/Users/enzo/Documents/GitHub/dataset/VOCdevkit/VOC2007"

    # 标注文件地址
    annotation = os.path.join(data_root, 'Annotations')

    # yolo格式的文件保存地址
    save_root = './labels'
    if not os.path.exists(save_root):
        os.makedirs(save_root)

    for train_val in ["train", "val"]:
        if not os.path.exists(os.path.join(save_root, train_val)):
            os.makedirs(os.path.join(save_root, train_val))

        # 数据集划分的 .txt 文件地址
        txt_file = os.path.join(data_root, 'ImageSets/Main', train_val+'.txt')

        with open(txt_file, 'r') as f:
            lines = f.readlines()
        file_names = [line.strip() for line in lines if len(line.strip())>0]

        for file_name in file_names:
            xml_file = os.path.join(annotation, file_name+'.xml')
            save_file = os.path.join(save_root, train_val, file_name+'.txt')
            convert_annotation(xml_file, save_file)


10、Reference

https://arleyzhang.github.io/articles/1dc20586/

你可能感兴趣的:(#,数据集研究,计算机视觉,深度学习,YOLO)