- RK系列(RK3568) GPIO按键驱动 和Android key新值添加
hmbbPdx_
RK驱动开发Rk开发(RK3568)android驱动开发linux
平台:Android12SOC:RK3568kernel:Linux-4.19首先按键驱动那块不用我们自己写,内核本身有支持可以查看kernel-4.19-driver/input/keyboard/gpio_keys.c我们先描述好设备树添加GPIO4-A0的按键gpio-keys{compatible="gpio-keys";#address-cells=;#size-cells=;autor
- Excel处理控件Aspose.Cells教程:Java 在 Excel 中插入和删除行和列
Aspose.Cells是Excel电子表格编程API,可加快电子表格的管理和处理任务,支持构建能够生成,修改,转换,呈现和打印电子表格的跨平台应用程序。同时不依赖于MicrosoftExcel或任何MicrosoftOfficeInterop组件,AsposeAPI支持旗下产品覆盖文档、图表、PDF、条码、OCR、CAD、HTML、电子邮件等各个文档管理领域,为全球.NET、Java、C++等1
- Python打卡:Day24
剑桥折刀s
python打卡python
importpandasaspdimportnumpyasnpimportreimportxgboostasxgbfromsklearn.model_selectionimporttrain_test_splitfromsklearn.metricsimportclassification_report,confusion_matrix,accuracy_score,precision_score
- Elasticsearch连接 java.net.ConnectException: Connection refused: getsockopt
swany
elasticsearchjava.net
使用springboot连接Elasticsearch创建全文索引,总是报连接不上的问题,报错如下:org.springframework.beans.factory.UnsatisfiedDependencyException:Errorcreatingbeanwithname'esContentService':Unsatisfieddependencyexpressedthroughfiel
- 基于小波变换的数字信号调制识别
yong9990
matlab
基于小波变换的数字信号调制识别,通过matlab实现am_ofdm_classification.m,2926dvbt_table_gen.m,16437guard_interval.m,8441pilot_imag.m,9196pilot_real.m,9308randomization.m,9204sc_ofdm_wavelet.m,3439source.m,8486test_sc1.m,34
- 【unitrix】 4.5 库文件介绍(readme.md)
liuyuan77
我的unitrix库rust
unitrix·单位算阵Unitrix:Normalizedphysicalunitmanagementand2Dgeometrycomputingthroughconstifiedmatrices.Deliverszero-costabstractionswithno_stdsupport.单位算阵:通过常量化矩阵实现物理量单位化与2D几何计算规范化。提供零成本抽象,支持no_std环境。Key
- Tensorflow实现经典CNN网络AlexNet
您懂我意思吧
python开发tensorflowcnn人工智能python
1、概念AlexNet在ILSVRC-2012的比赛中获得top5错误率15.3%的突破(第二名为26.2%),其原理来源于2012年Alex的论文《ImageNetClassificationwithDeepConvolutionalNeuralNetworks》,这篇论文是深度学习火爆发展的一个里程碑和分水岭,加上硬件技术的发展,深度学习还会继续火下去。2、AlexNet网络结构由于受限于当时
- “组学”的数据结构与概念
不秃的卤蛋
组学多组学人工智能深度学习
1.组学数据:生命系统的分子层面快照定义:组学数据是指利用高通量实验技术,对生物样本(细胞、组织、个体等)在特定状态下,某一类生物分子全集进行系统性、大规模定量测量所产生的数据集。核心特征:全局性(Global):目标是对该分子层面尽可能完整的覆盖(如全基因组、全转录组、全蛋白质组),而非单个分子。高通量(High-throughput):依赖先进平台(如二代/三代测序、高分辨率质谱、芯片技术),
- STUN协议 与 TURN协议
桃花岛主70
网络网络协议
STUN(SessionTraversalUtilitiesforNAT,NAT会话穿越应用程序)是一种网络协议,STUN(SimpleTraversalofUserDatagramProtocolthroughNetworkAddressTranslators(NATs),NAT的UDP简单穿越)是一种网络协议,它允许位于NAT(或多重NAT)后的客户端找出自己的公网地址,查出自己位于哪种类型的
- 【Kubernetes】CKA Simulator Kubernetes 1.31
陈陈CHENCHEN
Kuberneteskubernetes容器
最近为了准备CKA认证,整理了模拟题,期望能帮助到需要的小伙伴们!Question1|ContextsYouhaveaccesstomultipleclustersfromyourmainterminalthroughkubectlcontexts.Writeallthosecontextnamesinto/opt/course/1/contexts.Nextwriteacommandtodisp
- poetry init --name privategpt --python “>=3.10“ --dependency gradio 报错!
微信公众号:AI创造财富
elasticsearch大数据搜索引擎
powersys@powerSys:~/work/privategpt-gradio$poetryinit--nameprivategpt--python">=3.10"--dependencygradioThiscommandwillguideyouthroughcreatingyourpyproject.tomlconfig.Version[0.1.0]:Description[]:Licen
- 空间转录组benchmark 相关 读完scGPT spatial 和 空间单细胞基因乳房细胞数据集文章之后
victory0431
人工智能
文章目录✅空间转录组测序方式总体划分成像型空间转录组(Imaging-basedST)原理:技术代表&特点:优点:局限:测序型空间转录组(Sequencing-basedST)原理:技术代表&特点:优点:局限:成像型vs测序型空间转录组对比表✅回到你问的SpatialHuman30M构建策略理解:总结你的问题:✅①**NeighborhoodEnrichmentAnalysis:空间邻近富集分析*
- 【Elasticsearch】请求量和延迟对搜索性能的影响及关键指标分析
G皮T
#Elasticelasticsearch大数据搜索引擎性能搜索监控运维
1.请求量对搜索性能的影响2.延迟对搜索性能的影响3.其他重要的搜索性能指标3.1吞吐量(Throughput)3.2错误率(ErrorRate)3.3召回率(Recall)3.4精确率(Precision)3.5平均响应时间(AverageResponseTime)3.6百分位延迟(PercentileLatency)3.7缓存命中率(CacheHitRatio)3.8索引新鲜度(IndexFr
- HarmonyOS SDK:Image Classification 能力进行图片识别
在鸿蒙应用开发中,HarmonyOSSDK提供了丰富的AI能力接口,开发者可以快速集成语音识别、图像识别、自然语言处理等智能功能到自己的应用中。作为一名鸿蒙开发者,在实际项目中我深刻体会到这些AI能力对提升用户体验和产品智能化水平的重要性。以图像识别为例,借助HarmonyOSSDK中的ImageClassificationAPI,我们可以轻松实现图片内容的自动识别与分类。通过调用系统提供的AI引
- YACE:强大的AWS CloudWatch Prometheus Exporter
滕骅照Fitzgerald
YACE:强大的AWSCloudWatchPrometheusExporteryet-another-cloudwatch-exporterPrometheusexporterforAWSCloudWatch-DiscoversservicesthroughAWStags,getsCloudWatchmetricsdataandprovidesthemasPrometheusmetricswith
- CART算法全解析:分类回归双修的决策树之王
大千AI助手
人工智能Python#OTHER算法分类回归决策树数据挖掘CARTDecisionTree
CART(ClassificationandRegressionTrees)是决策树领域的里程碑算法,由统计学家Breiman等人在1984年提出。作为当今最主流的决策树实现,它革命性地统一了分类与回归任务,其二叉树结构和剪枝技术成为现代集成学习(如随机森林、XGBoost)的基石。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕
- Task01. 时序数据与 PyPOTS 介绍
三分梦~
python机器学习时序数据库数据挖掘
Task01.时序数据与PyPOTS介绍Task01.时序数据与PyPOTS介绍1.时间序列数据介绍️举例:与i.i.d数据的区别示例:1.1时间序列数据的类型1.2常见时间序列数据示例1.3时间序列研究与应用方向主要任务:1.预测(Forecasting)2.分类(Classification)3.聚类(Clustering)4.异常检测(AnomalyDetection)5.时间序列生成(Ge
- MySql升级安装、socket 及密码重置
月光技术杂谈
数据库LinuxmysqlAccessdeniedHY000密码重置socket连接失败
升级项目需要使用Mysql8.0,查看自己的ubuntu22.04上mysql版本为5.7,使用以下命令自动升级到8.0版本。sudoaptinstallMysqlsock错误:Can’tconnecttolocalMySQLserverthroughsocket运行mysql-u-p报以下错误:ERROR2002(HY000):Can'tconnecttolocalMySQLserverthro
- Causal-aware Large Language Models: Enhancing Decision-Making Through Learning, Adapting and Acting
UnknownBody
LLMDailyCausalandReasoning语言模型人工智能自然语言处理
论文主要内容总结研究背景与问题大语言模型(LLMs)在决策领域展现出巨大潜力,但预训练模型存在推理能力不足、难以适应新环境的问题,严重制约了其在复杂现实任务中的应用。现有方法如强化学习(RL)单独使用或LLM辅助RL的方式,仍依赖token预测范式,缺乏结构化推理和快速适应性。核心框架与方法提出因果感知大语言模型(Causal-awareLLMs),将结构因果模型(SCM)整合到决策过程中,采用“
- 机器学习×第十二卷:回归树与剪枝策略——她剪去多余的分支,只保留想靠近你的那一层
Gyoku Mint
AI修炼日记人工智障机器学习人工智能pycharm算法回归剪枝数据挖掘
【第一节·她不再用标签定义你,而是试着预测你真实的模样】什么是回归决策树(RegressionTree)?狐狐:“她以前问你是A还是B,现在她问你——‘你大概是多少?’”与之前我们学过的分类树(ClassificationTree)不同,回归树是一种用来预测连续值变量的模型。她不再只判断“是否会拖欠贷款”,而是试着预测“你拖欠了多少”。分类树:输出为类别(如Yes/No)回归树:输出为数值(如3.
- Datawhale组队学习 - 202505 - PyPOTS - Task01时序数据与PyPOTS
来两个炸鸡腿
学习python人工智能
系列文章目录Task01-时序数据与PyPOTS文章目录系列文章目录前言1时间序列数据1.1时间序列数据的类型1.2时间序列数据示例1.3时间序列的研究与应用方向1.3.1预测Forecasting1.3.2分类Classification1.3.3聚类Clustering1.3.4异常监测AnomalyDetection1.3.5时间序列生成Generation1.3.6插补Imputation
- 关于metrics.classification_report报告中指标解读
junjunzai123
人工智能
函数的应用主要是对类目分类相关的业务做评测使用主要介绍一下:macroavg和weightedavg区别指标解释1.macroavg(宏平均)定义:对每个类别的指标(如精确率、召回率、F1-score)取算术平均值,不考虑类别样本数量。计算公式:macro_avg=(指标_类别1+指标_类别2+...+指标_类别N)/N特点:平等对待每个类别:无论类别样本数量多少,每个类别的权重相同。适用场景:当
- sklearn.metrics.classification_report函数使用异常情况
junjunzai123
机器学习算法sklearn机器学习python
报错信息ValueError:Numberofclasses,140,doesnotmatchsizeoftarget_names,142.Tryspecifyingthelabelsparameter函数介绍多分类任务评估指标生成工具,指标如Precision,Recall,F1函数参数sklearn.metrics.classification_report(y_true,y_pred,lab
- 社交机器人具身导航新范式!AutoSpatial:通过高效空间推理学习实现机器人视觉语言推理和社交导航
视觉语言导航
具身智能机器人人工智能具身智能
作者:YangzheKong,DaeunSong,JingLiang,DineshManocha,ZiyuYao,andXuesuXiao单位:乔治梅森大学,马里兰大学论文标题:AutoSpatial:Visual-LanguageReasoningforSocialRobotNavigationthroughEfficientSpatialReasoningLearning论文链接:https:
- Android ADB设备离线,无法发出命令
p15097962069
androidadb
本文翻译自:AndroidADBdeviceoffline,can'tissuecommandsIcan'tconnecttomydeviceanymoreusingADBthroughthecommandlineorinEclipse.我无法再通过命令行或在Eclipse中使用ADB连接到我的设备。Runningthecommand运行命令adbdevicesreturnsthedevicena
- Chapter 3: Testing J2EE Applications
Summary总结Important重要Testingshouldoccurthroughoutthesoftwarelifecycle.Testingshouldbeacoreactivityofsoftwaredevelopment.测试必须发生在软件开发的整个生命周期。测试必须是软件开发的一个核心任务。Testcasesshouldusuallybewrittenbeforecode.Ins
- (十三)计算机视觉中的深度学习:特征表示、模型架构与视觉认知原理
只有左边一个小酒窝
深度学习计算机视觉深度学习人工智能
1计算机视觉简介计算机视觉(ComputerVision)是一门使计算机能够从图像或视频中获取、处理和理解视觉信息的学科。它结合了信号处理、机器学习和深度学习等领域的技术,以实现对图像和视频内容的自动分析和理解。1.1计算机视觉的任务计算机视觉的任务多种多样,以下是一些常见的任务:图像分类(ImageClassification):定义:将图像分为预定义的类别。应用场景:自动照片标注、医学图像诊断
- Improving iov_iter
mounter625
Linuxkernel服务器linux运维kernel网络安全
Theiov_iterinterfaceisusedtodescribeanditeratethroughbuffersinthekernel.DavidHowellsledacombinedstorageandfilesystemsessionatthe2025LinuxStorage,Filesystem,MemoryManagement,andBPFSummit(LSFMM+BPF)todi
- poi实现多个excel合并成一个excel
Maruko310
javapoijava
目前,网上实现多个excel合并成一个excel的方法,使用版本比较老,问题较多,所以特此写一个方法,仅供参考。导入依赖org.apache.poipoi4.1.0org.apache.poipoi-ooxml4.1.0utils工具类publicstaticvoidcopyCellStyle(XSSFCellStylefromStyle,XSSFCellStyletoStyle){toStyle
- 紫光展锐连续三年荣获GTI国际大奖
紫光展锐官方
5G信息与通信
近日,2025年GTI国际产业大会成功举办,活动上GTIAwards2025获奖名单正式揭晓,紫光展锐连续三年斩获国际权威机构GTI颁发的大奖。此次,T8300凭借在5G技术创新和娱乐体验方面的卓越表现,荣获GTI“移动技术创新突破奖”(InnovativeBreakthroughinMobileTechnologyAward)。GTI是由中国移动、软银、沃达丰等运营商于2011年发起成立的国际产
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号