title: 13 Pandas怎样实现DataFrame的Merge
tags: 数据分析,pandas,小书匠 grammar_cjkRuby: true
[toc]
13 Pandas怎样实现DataFrame的Merge
Pandas的Merge,相当于Sql的Join,将不同的表按key关联到一个表
merge的语法:
pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=True, suffixes=('_x', '_y'), copy=True, indicator=False, validate=None)
- left,right:要merge的dataframe或者有name的Series
- how:join类型,‘left’, ‘right’, ‘outer’, ‘inner’
- on:join的key,left和right都需要有这个key
- left_on:left的df或者series的key
- right_on:right的df或者seires的key
- left_index,right_index:使用index而不是普通的column做join
- suffixes:两个元素的后缀,如果列有重名,自动添加后缀,默认是(’_x’, ‘_y’)
文档地址:https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.merge.html
本次讲解提纲:
- 电影数据集的join实例
- 理解merge时一对一、一对多、多对多的数量对齐关系
- 理解left join、right join、inner join、outer join的区别
- 如果出现非Key的字段重名怎么办
1、电影数据集的join实例
电影评分数据集
是推荐系统研究的很好的数据集 位于本代码目录:./datas/movielens-1m
包含三个文件:
- 用户对电影的评分数据 ratings.dat
- 用户本身的信息数据 users.dat
- 电影本身的数据 movies.dat
可以关联三个表,得到一个完整的大表
数据集官方地址:https://grouplens.org/datasets/movielens/
import pandas as pd
# 用户对电影的评分数据
df_ratings = pd.read_csv(
"./datas/movielens-1m/ratings.dat",
sep="::",
engine='python',
names="UserID::MovieID::Rating::Timestamp".split("::")
)
df_ratings.head()
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
UserID | MovieID | Rating | Timestamp | |
---|---|---|---|---|
0 | 1 | 1193 | 5 | 978300760 |
1 | 1 | 661 | 3 | 978302109 |
2 | 1 | 914 | 3 | 978301968 |
3 | 1 | 3408 | 4 | 978300275 |
4 | 1 | 2355 | 5 | 978824291 |
# 用户本身的信息数据
df_users = pd.read_csv(
"./datas/movielens-1m/users.dat",
sep="::",
engine='python',
names="UserID::Gender::Age::Occupation::Zip-code".split("::")
)
df_users.head()
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
UserID | Gender | Age | Occupation | Zip-code | |
---|---|---|---|---|---|
0 | 1 | F | 1 | 10 | 48067 |
1 | 2 | M | 56 | 16 | 70072 |
2 | 3 | M | 25 | 15 | 55117 |
3 | 4 | M | 45 | 7 | 02460 |
4 | 5 | M | 25 | 20 | 55455 |
# 电影数据
df_movies = pd.read_csv(
"./datas/movielens-1m/movies.dat",
sep="::",
engine='python',
names="MovieID::Title::Genres".split("::")
)
df_movies.head()
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
MovieID | Title | Genres | |
---|---|---|---|
0 | 1 | Toy Story (1995) | Animation|Children's|Comedy |
1 | 2 | Jumanji (1995) | Adventure|Children's|Fantasy |
2 | 3 | Grumpier Old Men (1995) | Comedy|Romance |
3 | 4 | Waiting to Exhale (1995) | Comedy|Drama |
4 | 5 | Father of the Bride Part II (1995) | Comedy |
# 用户评分关联用户信息
df_ratings_users = pd.merge(
df_ratings, df_users, left_on="UserID", right_on="UserID", how="inner"
)
df_ratings_users.head()
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
UserID | MovieID | Rating | Timestamp | Gender | Age | Occupation | Zip-code | |
---|---|---|---|---|---|---|---|---|
0 | 1 | 1193 | 5 | 978300760 | F | 1 | 10 | 48067 |
1 | 1 | 661 | 3 | 978302109 | F | 1 | 10 | 48067 |
2 | 1 | 914 | 3 | 978301968 | F | 1 | 10 | 48067 |
3 | 1 | 3408 | 4 | 978300275 | F | 1 | 10 | 48067 |
4 | 1 | 2355 | 5 | 978824291 | F | 1 | 10 | 48067 |
# 用户评分关联电影
df_ratings_users_movies = pd.merge(
df_ratings_users, df_movies, left_on="MovieID", right_on="MovieID", how="inner"
)
df_ratings_users_movies.head(10)
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
UserID | MovieID | Rating | Timestamp | Gender | Age | Occupation | Zip-code | Title | Genres | |
---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 1193 | 5 | 978300760 | F | 1 | 10 | 48067 | One Flew Over the Cuckoo's Nest (1975) | Drama |
1 | 2 | 1193 | 5 | 978298413 | M | 56 | 16 | 70072 | One Flew Over the Cuckoo's Nest (1975) | Drama |
2 | 12 | 1193 | 4 | 978220179 | M | 25 | 12 | 32793 | One Flew Over the Cuckoo's Nest (1975) | Drama |
3 | 15 | 1193 | 4 | 978199279 | M | 25 | 7 | 22903 | One Flew Over the Cuckoo's Nest (1975) | Drama |
4 | 17 | 1193 | 5 | 978158471 | M | 50 | 1 | 95350 | One Flew Over the Cuckoo's Nest (1975) | Drama |
5 | 18 | 1193 | 4 | 978156168 | F | 18 | 3 | 95825 | One Flew Over the Cuckoo's Nest (1975) | Drama |
6 | 19 | 1193 | 5 | 982730936 | M | 1 | 10 | 48073 | One Flew Over the Cuckoo's Nest (1975) | Drama |
7 | 24 | 1193 | 5 | 978136709 | F | 25 | 7 | 10023 | One Flew Over the Cuckoo's Nest (1975) | Drama |
8 | 28 | 1193 | 3 | 978125194 | F | 25 | 1 | 14607 | One Flew Over the Cuckoo's Nest (1975) | Drama |
9 | 33 | 1193 | 5 | 978557765 | M | 45 | 3 | 55421 | One Flew Over the Cuckoo's Nest (1975) | Drama |
2、理解merge时数量的对齐关系
以下关系要正确理解:
- one-to-one:一对一关系,关联的key都是唯一的
- 比如(学号,姓名) merge (学号,年龄)
- 结果条数为:1*1
- one-to-many:一对多关系,左边唯一key,右边不唯一key
- 比如(学号,姓名) merge (学号,[语文成绩、数学成绩、英语成绩])
- 结果条数为:1*N
- many-to-many:多对多关系,左边右边都不是唯一的
- 比如(学号,[语文成绩、数学成绩、英语成绩]) merge (学号,[篮球、足球、乒乓球])
- 结果条数为:M*N
2.1 one-to-one 一对一关系的merge
left = pd.DataFrame({'sno': [11, 12, 13, 14],
'name': ['name_a', 'name_b', 'name_c', 'name_d']
})
left
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
sno | name | |
---|---|---|
0 | 11 | name_a |
1 | 12 | name_b |
2 | 13 | name_c |
3 | 14 | name_d |
right = pd.DataFrame({'sno': [11, 12, 13, 14],
'age': ['21', '22', '23', '24']
})
right
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
sno | age | |
---|---|---|
0 | 11 | 21 |
1 | 12 | 22 |
2 | 13 | 23 |
3 | 14 | 24 |
# 一对一关系,结果中有4条
pd.merge(left, right, on='sno')
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
sno | name | age | |
---|---|---|---|
0 | 11 | name_a | 21 |
1 | 12 | name_b | 22 |
2 | 13 | name_c | 23 |
3 | 14 | name_d | 24 |
2.2 one-to-many 一对多关系的merge
注意:数据会被复制
left = pd.DataFrame({'sno': [11, 12, 13, 14],
'name': ['name_a', 'name_b', 'name_c', 'name_d']
})
left
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
sno | name | |
---|---|---|
0 | 11 | name_a |
1 | 12 | name_b |
2 | 13 | name_c |
3 | 14 | name_d |
right = pd.DataFrame({'sno': [11, 11, 11, 12, 12, 13],
'grade': ['语文88', '数学90', '英语75','语文66', '数学55', '英语29']
})
right
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
sno | grade | |
---|---|---|
0 | 11 | 语文88 |
1 | 11 | 数学90 |
2 | 11 | 英语75 |
3 | 12 | 语文66 |
4 | 12 | 数学55 |
5 | 13 | 英语29 |
# 数目以多的一边为准
pd.merge(left, right, on='sno')
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
sno | name | grade | |
---|---|---|---|
0 | 11 | name_a | 语文88 |
1 | 11 | name_a | 数学90 |
2 | 11 | name_a | 英语75 |
3 | 12 | name_b | 语文66 |
4 | 12 | name_b | 数学55 |
5 | 13 | name_c | 英语29 |
2.3 many-to-many 多对多关系的merge
注意:结果数量会出现乘法
left = pd.DataFrame({'sno': [11, 11, 12, 12,12],
'爱好': ['篮球', '羽毛球', '乒乓球', '篮球', "足球"]
})
left
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
sno | 爱好 | |
---|---|---|
0 | 11 | 篮球 |
1 | 11 | 羽毛球 |
2 | 12 | 乒乓球 |
3 | 12 | 篮球 |
4 | 12 | 足球 |
right = pd.DataFrame({'sno': [11, 11, 11, 12, 12, 13],
'grade': ['语文88', '数学90', '英语75','语文66', '数学55', '英语29']
})
right
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
sno | grade | |
---|---|---|
0 | 11 | 语文88 |
1 | 11 | 数学90 |
2 | 11 | 英语75 |
3 | 12 | 语文66 |
4 | 12 | 数学55 |
5 | 13 | 英语29 |
pd.merge(left, right, on='sno')
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
sno | 爱好 | grade | |
---|---|---|---|
0 | 11 | 篮球 | 语文88 |
1 | 11 | 篮球 | 数学90 |
2 | 11 | 篮球 | 英语75 |
3 | 11 | 羽毛球 | 语文88 |
4 | 11 | 羽毛球 | 数学90 |
5 | 11 | 羽毛球 | 英语75 |
6 | 12 | 乒乓球 | 语文66 |
7 | 12 | 乒乓球 | 数学55 |
8 | 12 | 篮球 | 语文66 |
9 | 12 | 篮球 | 数学55 |
10 | 12 | 足球 | 语文66 |
11 | 12 | 足球 | 数学55 |
3、理解left join、right join、inner join、outer join的区别
left = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
'A': ['A0', 'A1', 'A2', 'A3'],
'B': ['B0', 'B1', 'B2', 'B3']})
right = pd.DataFrame({'key': ['K0', 'K1', 'K4', 'K5'],
'C': ['C0', 'C1', 'C4', 'C5'],
'D': ['D0', 'D1', 'D4', 'D5']})
left
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
key | A | B | |
---|---|---|---|
0 | K0 | A0 | B0 |
1 | K1 | A1 | B1 |
2 | K2 | A2 | B2 |
3 | K3 | A3 | B3 |
right
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
key | C | D | |
---|---|---|---|
0 | K0 | C0 | D0 |
1 | K1 | C1 | D1 |
2 | K4 | C4 | D4 |
3 | K5 | C5 | D5 |
3.1 inner join,默认
左边和右边的key都有,才会出现在结果里
pd.merge(left, right, how='inner')
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
key | A | B | C | D | |
---|---|---|---|---|---|
0 | K0 | A0 | B0 | C0 | D0 |
1 | K1 | A1 | B1 | C1 | D1 |
3.2 left join
左边的都会出现在结果里,右边的如果无法匹配则为Null
pd.merge(left, right, how='left')
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
key | A | B | C | D | |
---|---|---|---|---|---|
0 | K0 | A0 | B0 | C0 | D0 |
1 | K1 | A1 | B1 | C1 | D1 |
2 | K2 | A2 | B2 | NaN | NaN |
3 | K3 | A3 | B3 | NaN | NaN |
3.3 right join
右边的都会出现在结果里,左边的如果无法匹配则为Null
pd.merge(left, right, how='right')
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
key | A | B | C | D | |
---|---|---|---|---|---|
0 | K0 | A0 | B0 | C0 | D0 |
1 | K1 | A1 | B1 | C1 | D1 |
2 | K4 | NaN | NaN | C4 | D4 |
3 | K5 | NaN | NaN | C5 | D5 |
3.4 outer join
左边、右边的都会出现在结果里,如果无法匹配则为Null
pd.merge(left, right, how='outer')
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
key | A | B | C | D | |
---|---|---|---|---|---|
0 | K0 | A0 | B0 | C0 | D0 |
1 | K1 | A1 | B1 | C1 | D1 |
2 | K2 | A2 | B2 | NaN | NaN |
3 | K3 | A3 | B3 | NaN | NaN |
4 | K4 | NaN | NaN | C4 | D4 |
5 | K5 | NaN | NaN | C5 | D5 |
4、如果出现非Key的字段重名怎么办
left = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
'A': ['A0', 'A1', 'A2', 'A3'],
'B': ['B0', 'B1', 'B2', 'B3']})
right = pd.DataFrame({'key': ['K0', 'K1', 'K4', 'K5'],
'A': ['A10', 'A11', 'A12', 'A13'],
'D': ['D0', 'D1', 'D4', 'D5']})
left
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
key | A | B | |
---|---|---|---|
0 | K0 | A0 | B0 |
1 | K1 | A1 | B1 |
2 | K2 | A2 | B2 |
3 | K3 | A3 | B3 |
right
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
key | A | D | |
---|---|---|---|
0 | K0 | A10 | D0 |
1 | K1 | A11 | D1 |
2 | K4 | A12 | D4 |
3 | K5 | A13 | D5 |
pd.merge(left, right, on='key')
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
key | A_x | B | A_y | D | |
---|---|---|---|---|---|
0 | K0 | A0 | B0 | A10 | D0 |
1 | K1 | A1 | B1 | A11 | D1 |
pd.merge(left, right, on='key', suffixes=('_left', '_right'))
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
key | A_left | B | A_right | D | |
---|---|---|---|---|---|
0 | K0 | A0 | B0 | A10 | D0 |
1 | K1 | A1 | B1 | A11 | D1 |
本文使用 文章同步助手 同步