13 Pandas怎样实现DataFrame的Merge


title: 13 Pandas怎样实现DataFrame的Merge
tags: 数据分析,pandas,小书匠 grammar_cjkRuby: true

[toc]

13 Pandas怎样实现DataFrame的Merge

Pandas的Merge,相当于Sql的Join,将不同的表按key关联到一个表

merge的语法:

pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=True, suffixes=('_x', '_y'), copy=True, indicator=False, validate=None)

  • left,right:要merge的dataframe或者有name的Series
  • how:join类型,‘left’, ‘right’, ‘outer’, ‘inner’
  • on:join的key,left和right都需要有这个key
  • left_on:left的df或者series的key
  • right_on:right的df或者seires的key
  • left_index,right_index:使用index而不是普通的column做join
  • suffixes:两个元素的后缀,如果列有重名,自动添加后缀,默认是(’_x’, ‘_y’)

文档地址:https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.merge.html

本次讲解提纲:

  1. 电影数据集的join实例
  2. 理解merge时一对一、一对多、多对多的数量对齐关系
  3. 理解left join、right join、inner join、outer join的区别
  4. 如果出现非Key的字段重名怎么办

1、电影数据集的join实例

电影评分数据集

是推荐系统研究的很好的数据集 位于本代码目录:./datas/movielens-1m

包含三个文件:

  1. 用户对电影的评分数据 ratings.dat
  2. 用户本身的信息数据 users.dat
  3. 电影本身的数据 movies.dat

可以关联三个表,得到一个完整的大表

数据集官方地址:https://grouplens.org/datasets/movielens/

  
  
  
  
import pandas as pd # 用户对电影的评分数据 df_ratings = pd.read_csv( "./datas/movielens-1m/ratings.dat", sep="::", engine='python', names="UserID::MovieID::Rating::Timestamp".split("::") ) df_ratings.head()
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } 
UserID MovieID Rating Timestamp
0 1 1193 5 978300760
1 1 661 3 978302109
2 1 914 3 978301968
3 1 3408 4 978300275
4 1 2355 5 978824291
  
  
  
  
# 用户本身的信息数据 df_users = pd.read_csv( "./datas/movielens-1m/users.dat", sep="::", engine='python', names="UserID::Gender::Age::Occupation::Zip-code".split("::") ) df_users.head()
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } 
UserID Gender Age Occupation Zip-code
0 1 F 1 10 48067
1 2 M 56 16 70072
2 3 M 25 15 55117
3 4 M 45 7 02460
4 5 M 25 20 55455
  
  
  
  
# 电影数据 df_movies = pd.read_csv( "./datas/movielens-1m/movies.dat", sep="::", engine='python', names="MovieID::Title::Genres".split("::") ) df_movies.head()
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } 
MovieID Title Genres
0 1 Toy Story (1995) Animation|Children's|Comedy
1 2 Jumanji (1995) Adventure|Children's|Fantasy
2 3 Grumpier Old Men (1995) Comedy|Romance
3 4 Waiting to Exhale (1995) Comedy|Drama
4 5 Father of the Bride Part II (1995) Comedy
  
  
  
  
# 用户评分关联用户信息 df_ratings_users = pd.merge( df_ratings, df_users, left_on="UserID", right_on="UserID", how="inner" ) df_ratings_users.head()
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } 
UserID MovieID Rating Timestamp Gender Age Occupation Zip-code
0 1 1193 5 978300760 F 1 10 48067
1 1 661 3 978302109 F 1 10 48067
2 1 914 3 978301968 F 1 10 48067
3 1 3408 4 978300275 F 1 10 48067
4 1 2355 5 978824291 F 1 10 48067
  
  
  
  
# 用户评分关联电影 df_ratings_users_movies = pd.merge( df_ratings_users, df_movies, left_on="MovieID", right_on="MovieID", how="inner" ) df_ratings_users_movies.head(10)
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } 
UserID MovieID Rating Timestamp Gender Age Occupation Zip-code Title Genres
0 1 1193 5 978300760 F 1 10 48067 One Flew Over the Cuckoo's Nest (1975) Drama
1 2 1193 5 978298413 M 56 16 70072 One Flew Over the Cuckoo's Nest (1975) Drama
2 12 1193 4 978220179 M 25 12 32793 One Flew Over the Cuckoo's Nest (1975) Drama
3 15 1193 4 978199279 M 25 7 22903 One Flew Over the Cuckoo's Nest (1975) Drama
4 17 1193 5 978158471 M 50 1 95350 One Flew Over the Cuckoo's Nest (1975) Drama
5 18 1193 4 978156168 F 18 3 95825 One Flew Over the Cuckoo's Nest (1975) Drama
6 19 1193 5 982730936 M 1 10 48073 One Flew Over the Cuckoo's Nest (1975) Drama
7 24 1193 5 978136709 F 25 7 10023 One Flew Over the Cuckoo's Nest (1975) Drama
8 28 1193 3 978125194 F 25 1 14607 One Flew Over the Cuckoo's Nest (1975) Drama
9 33 1193 5 978557765 M 45 3 55421 One Flew Over the Cuckoo's Nest (1975) Drama

2、理解merge时数量的对齐关系

以下关系要正确理解:

  • one-to-one:一对一关系,关联的key都是唯一的
    • 比如(学号,姓名) merge (学号,年龄)
    • 结果条数为:1*1
  • one-to-many:一对多关系,左边唯一key,右边不唯一key
    • 比如(学号,姓名) merge (学号,[语文成绩、数学成绩、英语成绩])
    • 结果条数为:1*N
  • many-to-many:多对多关系,左边右边都不是唯一的
    • 比如(学号,[语文成绩、数学成绩、英语成绩]) merge (学号,[篮球、足球、乒乓球])
    • 结果条数为:M*N

2.1 one-to-one 一对一关系的merge

  
  
  
  
left = pd.DataFrame({'sno': [11, 12, 13, 14], 'name': ['name_a', 'name_b', 'name_c', 'name_d'] }) left
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } 
sno name
0 11 name_a
1 12 name_b
2 13 name_c
3 14 name_d
  
  
  
  
right = pd.DataFrame({'sno': [11, 12, 13, 14], 'age': ['21', '22', '23', '24'] }) right
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } 
sno age
0 11 21
1 12 22
2 13 23
3 14 24
  
  
  
  
# 一对一关系,结果中有4条 pd.merge(left, right, on='sno')
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } 
sno name age
0 11 name_a 21
1 12 name_b 22
2 13 name_c 23
3 14 name_d 24

2.2 one-to-many 一对多关系的merge

注意:数据会被复制

  
  
  
  
left = pd.DataFrame({'sno': [11, 12, 13, 14], 'name': ['name_a', 'name_b', 'name_c', 'name_d'] }) left
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } 
sno name
0 11 name_a
1 12 name_b
2 13 name_c
3 14 name_d
  
  
  
  
right = pd.DataFrame({'sno': [11, 11, 11, 12, 12, 13], 'grade': ['语文88', '数学90', '英语75','语文66', '数学55', '英语29'] }) right
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } 
sno grade
0 11 语文88
1 11 数学90
2 11 英语75
3 12 语文66
4 12 数学55
5 13 英语29
  
  
  
  
# 数目以多的一边为准 pd.merge(left, right, on='sno')
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } 
sno name grade
0 11 name_a 语文88
1 11 name_a 数学90
2 11 name_a 英语75
3 12 name_b 语文66
4 12 name_b 数学55
5 13 name_c 英语29

2.3 many-to-many 多对多关系的merge

注意:结果数量会出现乘法

  
  
  
  
left = pd.DataFrame({'sno': [11, 11, 12, 12,12], '爱好': ['篮球', '羽毛球', '乒乓球', '篮球', "足球"] }) left
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } 
sno 爱好
0 11 篮球
1 11 羽毛球
2 12 乒乓球
3 12 篮球
4 12 足球
  
  
  
  
right = pd.DataFrame({'sno': [11, 11, 11, 12, 12, 13], 'grade': ['语文88', '数学90', '英语75','语文66', '数学55', '英语29'] }) right
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } 
sno grade
0 11 语文88
1 11 数学90
2 11 英语75
3 12 语文66
4 12 数学55
5 13 英语29
  
  
  
  
pd.merge(left, right, on='sno')
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } 
sno 爱好 grade
0 11 篮球 语文88
1 11 篮球 数学90
2 11 篮球 英语75
3 11 羽毛球 语文88
4 11 羽毛球 数学90
5 11 羽毛球 英语75
6 12 乒乓球 语文66
7 12 乒乓球 数学55
8 12 篮球 语文66
9 12 篮球 数学55
10 12 足球 语文66
11 12 足球 数学55

3、理解left join、right join、inner join、outer join的区别

  
  
  
  
left = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'], 'A': ['A0', 'A1', 'A2', 'A3'], 'B': ['B0', 'B1', 'B2', 'B3']}) right = pd.DataFrame({'key': ['K0', 'K1', 'K4', 'K5'], 'C': ['C0', 'C1', 'C4', 'C5'], 'D': ['D0', 'D1', 'D4', 'D5']}) left
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } 
key A B
0 K0 A0 B0
1 K1 A1 B1
2 K2 A2 B2
3 K3 A3 B3
  
  
  
  
right
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } 
key C D
0 K0 C0 D0
1 K1 C1 D1
2 K4 C4 D4
3 K5 C5 D5

3.1 inner join,默认

左边和右边的key都有,才会出现在结果里

  
  
  
  
pd.merge(left, right, how='inner')
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } 
key A B C D
0 K0 A0 B0 C0 D0
1 K1 A1 B1 C1 D1

3.2 left join

左边的都会出现在结果里,右边的如果无法匹配则为Null

  
  
  
  
pd.merge(left, right, how='left')
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } 
key A B C D
0 K0 A0 B0 C0 D0
1 K1 A1 B1 C1 D1
2 K2 A2 B2 NaN NaN
3 K3 A3 B3 NaN NaN

3.3 right join

右边的都会出现在结果里,左边的如果无法匹配则为Null

  
  
  
  
pd.merge(left, right, how='right')
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } 
key A B C D
0 K0 A0 B0 C0 D0
1 K1 A1 B1 C1 D1
2 K4 NaN NaN C4 D4
3 K5 NaN NaN C5 D5

3.4 outer join

左边、右边的都会出现在结果里,如果无法匹配则为Null

  
  
  
  
pd.merge(left, right, how='outer')
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } 
key A B C D
0 K0 A0 B0 C0 D0
1 K1 A1 B1 C1 D1
2 K2 A2 B2 NaN NaN
3 K3 A3 B3 NaN NaN
4 K4 NaN NaN C4 D4
5 K5 NaN NaN C5 D5

4、如果出现非Key的字段重名怎么办

  
  
  
  
left = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'], 'A': ['A0', 'A1', 'A2', 'A3'], 'B': ['B0', 'B1', 'B2', 'B3']}) right = pd.DataFrame({'key': ['K0', 'K1', 'K4', 'K5'], 'A': ['A10', 'A11', 'A12', 'A13'], 'D': ['D0', 'D1', 'D4', 'D5']}) left
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } 
key A B
0 K0 A0 B0
1 K1 A1 B1
2 K2 A2 B2
3 K3 A3 B3
  
  
  
  
right
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } 
key A D
0 K0 A10 D0
1 K1 A11 D1
2 K4 A12 D4
3 K5 A13 D5
  
  
  
  
pd.merge(left, right, on='key')
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } 
key A_x B A_y D
0 K0 A0 B0 A10 D0
1 K1 A1 B1 A11 D1
  
  
  
  
pd.merge(left, right, on='key', suffixes=('_left', '_right'))
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } 
key A_left B A_right D
0 K0 A0 B0 A10 D0
1 K1 A1 B1 A11 D1

本文使用 文章同步助手 同步

你可能感兴趣的:(13 Pandas怎样实现DataFrame的Merge)