Pytorch官方Demo——训练一个分类器

过年期间由于疫情影响,划水多天后良心发现,遂开始学习。

模型训练步骤

A typical training procedure for a neural network is as follows:

  1. Define the neural network that has some learnable parameters (or
    weights)
  2. Iterate over a dataset of inputs
  3. Process input through the network
  4. Compute the loss (how far is the output from being correct)
  5. Propagate gradients back into the network’s parameters
  6. Update the weights of the network, typically using a simple update rule:
    weight = weight - learning_rate * gradient!

Pytorch官方Demo——训练一个分类器_第1张图片

详细代码(具体知识见注释)

pytorch_demo_model.py

import torch.nn as nn
import torch.nn.functional as F


"""
定义一个类,这个类继承于nn.Module,实现两个方法:初始化函数和正向传播
实例化这个类之后,将参数传入这个类中,进行正向传播
"""
"""
If running on Windows and you get a BrokenPipeError, try setting
the num_worker of torch.utils.data.DataLoader() to 0.
"""

class LeNet(nn.Module):
    def __init__(self):
        # super解决在多重继承中调用父类可能出现的问题
        super(LeNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 16, 5)
        self.pool1 = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(16, 32, 5)
        self.pool2 = nn.MaxPool2d(2, 2)
        self.fc1 = nn.Linear(32*5*5, 120)  # 全连接层输入的是一维向量,第一层节点个数120是根据Pytorch官网demo设定
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)  # 10因为使用的是cifar10,分为10类

    def forward(self, x):
        x = F.relu(self.conv1(x))  # input (3,32,32)  output(16, 32-5+1=28, 32-5+1)
        x = self.pool1(x)  # output(16, 28/2=14, 28/2)
        x = F.relu((self.conv2(x)))  # output(32, 14-5+1=10, 14-5+1=10)
        x = self.pool2(x)  # output(32, 10/2=5, 10/2=5)
        x = x.view(-1, 32*5*5)  # output(32*5*5)
        x = F.relu(self.fc1(x))  # output(120)
        x = F.relu(self.fc2(x))  # output(84)
        x = F.relu(self.fc3(x))  # output(10)
        return x

pytorch_demo_train.py

import torch
import torchvision
import torch.nn as nn
from pytorch_demo_model import LeNet
import matplotlib as plt
import torchvision.transforms as transforms


import numpy as np

batch_size = 36
learning_rate = 1e-3

transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]  # 标准化 output = (input- 0.5)/0.5
)

# 50000张训练图片
trainset = torchvision.datasets.CIFAR10(root="./data", train=True, download=False, transform=transform)  # 当前目录的data文件夹下

trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=0)  # 在windows下,num_workers只能设置为0

# 10000张测试图片
testset = torchvision.datasets.CIFAR10(root="./data", train=True, download=False, transform=transform)  # 当前目录的data文件夹下

testloader = torch.utils.data.DataLoader(testset, batch_size=10000, shuffle=True, num_workers=0)  # 在windows下,num_workers只能设置为0

test_data_iter = iter(testloader)  # 将testloader转换为迭代器
test_img, test_label = test_data_iter.next()  # 通过next()获得一批数据

classes = ("plane", "car", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck")


def imshow(img):
    img = img / 2 + 0.5  # unnormalize反标准化过程input = output*0.5 + 0.5
    npimg = img.numpy()  # 转换为numpy
    plt.imshow(np.transpose(npimg, (1, 2, 0)))  # Pytorch内Tensor顺序[batch, channel, height, width],由于输入没有batch,故channel对于0,height对应1,width对应2
    # 此处要还原为载入图像时基础的shape,所以应把顺序变为[height, width, channel], 所以需要np.transpose(npimg, (1, 2, 0))
    plt.show()


# 打印几张图片看看
# print labels
# print(''.join('%5s' % classes[test_label[j]] for j in range(4))) 此处应将testloader内的batch_size改为4即可,没必要显示10000张
# show images
# imshow(torchvision.utils.make_grid(test_img))

# 实例化
Mynet = LeNet()
loss_fn = nn.CrossEntropyLoss()
optimizer = optim.Adam(Mynet.parameters(), lr=learning_rate)

for epoch in range(10):  # loop over the dataset multiple times
    running_loss = 0.
    for step, data in enumerate(trainloader, start=0):  # enumerate返回每一批数据和对应的index
        # get the inputs: data is a list of [inputs, labels]
        inputs, labels = data
        # zero the parameter
        optimizer.zero_grad()
        # forward + backward + optimize
        outputs = Mynet(inputs)
        loss = loss_fn(outputs, labels)
        loss.backward()
        optimizer.step()

        # print statistics
        running_loss += loss.item()
        if step % 500 == 499:  # print every 500 mini-batches
            with torch.no_grad():  # with是一个上下文管理器
                outputs = Mynet(test_img)  # [batch, 10]
                y_pred = torch.max(outputs, dim=1)[1]  # 找到最大值,即最有可能的类别,第0个维度对应batch,所以dim=1,第一个维度对应类别,[1]代表只需要index即可,即位置
                accuracy = (y_pred == test_label).sum().item() / test_label.size(0)  # 整个预测是在tensor变量中计算的,所以要用.item()转为数值, test_label.size(0)为测试样本的数目

                print('[%d, %5d] train_loss: %.3f  test_accuracy: %.3f' %
                          (epoch + 1, step + 1, running_loss / 500, accuracy))  # 500次的平均train_loss
                running_loss = 0.  # 清零,进行下一个500次的计算

print("Training finished")
save_path = './Lenet.pth'
torch.save(Mynet.state_dict(), save_path)



训练结果

Pytorch官方Demo——训练一个分类器_第2张图片
在网上下载一张飞机的图片,保存在同一路径下

pytorch_demo_test.py

import torch
import torchvision.transforms as transforms
from PIL import Image
from pytorch_demo_model import LeNet

transform = transforms.Compose(
    [transforms.Resize((32, 32)),
     transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]  # 标准化 output = (input- 0.5)/0.5
)

classes = ("plane", "car", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck")

net = LeNet()

net.load_state_dict(torch.load('Lenet.pth'))  # 载入权重文件

im = Image.open('plane.jpg')
im = transform(im)  # [C, H, W] 转成Pytorch的Tensor格式
im = torch.unsqueeze(im, dim=0)  # [N, C, H, W] 对数据增加一个新维度

with torch.no_grad():
    outputs = net(im)
    predict = torch.max(outputs, dim=1)[1].data.numpy()
print(classes[int(predict)])

训练结果

Pytorch官方Demo——训练一个分类器_第3张图片

你可能感兴趣的:(Pytorch深度学习,神经网络,深度学习)