3. vue3.0当编译.vue文件如何渲染内容及Diff算法

前面两个章,我们知道到了.vue文件最终会通过vue-loader进行拆解成下面格式:

import { render } from "./App.vue?vue&type=template&id=7ba5bd90&scoped=true"
import script from "./App.vue?vue&type=script&lang=js"
export * from "./App.vue?vue&type=script&lang=js"

import "./App.vue?vue&type=style&index=0&id=7ba5bd90&scoped=true&lang=css"
script.render = render
script.__scopeId = "data-v-7ba5bd90"
/* hot reload */
...
script.__file = "src/App.vue"

export default script

PS:在下文将会使用组件特指上面形式的(即.vue编译出来的)结构

当我们在代码中写:

import { createApp } from 'vue'
import App from './App.vue'

createApp(App).mount('#app')

好了开始我们今天的表演

1. createApp及mount

export function createAppAPI(
  render: RootRenderFunction,
  hydrate?: RootHydrateFunction
): CreateAppFunction {
  return function createApp(rootComponent, rootProps = null) {

    const context = createAppContext()
    const installedPlugins = new Set()

    let isMounted = false

    const app: App = {
      //这里将rootComponent保存
      _component: rootComponent as Component,
      _props: rootProps,
      _container: null,
      _context: context,

      //congfig,use,mixin,component,directive 方法省略
      ...  
      
      mount(rootContainer: HostElement, isHydrate?: boolean): any {
        if (!isMounted) {
          // 传入rootComponent创建VNode
          const vnode = createVNode(rootComponent as Component, rootProps)
   
          vnode.appContext = context
          //渲染
          if (isHydrate && hydrate) {
            hydrate(vnode as VNode, rootContainer as any)
          } else {
            render(vnode, rootContainer)
          }
          isMounted = true
          app._container = rootContainer
          return vnode.component!.proxy
        } 
      },
      // unmount,provide 省略
      ...
     }
    return app
  }
}

通过上面我们看到:

  1. 将在createApp中传入root组件props
  2. mount中如挂载并渲染
    2.1 通过root组件创建VNode
    2.2 通过在生成createApp方法时传入的render进行渲染

createVNode做了什么

function _createVNode(
  // 注意这里type  即可以通过传入type也可以对ClassComponent处理
  type: VNodeTypes | ClassComponent, 
  props: (Data & VNodeProps) | null = null,
  children: unknown = null,
  patchFlag: number = 0,
  dynamicProps: string[] | null = null
): VNode {
  
  // 处理props
  if (props) {
    // 如果props是响应式数据
    if (isReactive(props) || SetupProxySymbol in props) {
      //clone为普通形式数据
      props = extend({}, props)
    }
    let { class: klass, style } = props
    if (klass && !isString(klass)) {
      props.class = normalizeClass(klass)
    }
    if (isObject(style)) {
      // 如果props是响应式数据,clone为普通形式数据
      if (isReactive(style) && !isArray(style)) {
        style = extend({}, style)
      }
      props.style = normalizeStyle(style)
    }
  }

  // 通过传入type得到vnode属于哪种形式
  const shapeFlag = isString(type)
    ? ShapeFlags.ELEMENT //普通标签
    : __FEATURE_SUSPENSE__ && isSuspense(type)
      ? ShapeFlags.SUSPENSE
      : isPortal(type)
        ? ShapeFlags.PORTAL
        : isObject(type)
          ? ShapeFlags.STATEFUL_COMPONENT // 有状态型组件 下文称为组件
          : isFunction(type)
            ? ShapeFlags.FUNCTIONAL_COMPONENT //方法型组件
            : 0

  const vnode: VNode = {
    _isVNode: true,
    type,
    props,
    key: props && props.key !== undefined ? props.key : null,
    ref:
      props && props.ref !== undefined
        ? [currentRenderingInstance!, props.ref]
        : null,
    scopeId: currentScopeId,
    children: null,
    component: null,
    suspense: null,
    dirs: null,
    transition: null,
    el: null,
    anchor: null,
    target: null,
    shapeFlag,
    patchFlag,
    dynamicProps,
    dynamicChildren: null,
    appContext: null
  }
  //处理Vode的children
  normalizeChildren(vnode, children)

  // presence of a patch flag indicates this node needs patching on updates.
  // component nodes also should always be patched, because even if the
  // component doesn't need to update, it needs to persist the instance on to
  // the next vnode so that it can be properly unmounted later.
  if (
    shouldTrack > 0 &&
    currentBlock &&
    // the EVENTS flag is only for hydration and if it is the only flag, the
    // vnode should not be considered dynamic due to handler caching.
    patchFlag !== PatchFlags.HYDRATE_EVENTS &&
    (patchFlag > 0 ||
      shapeFlag & ShapeFlags.SUSPENSE ||
      shapeFlag & ShapeFlags.STATEFUL_COMPONENT ||
      shapeFlag & ShapeFlags.FUNCTIONAL_COMPONENT)
  ) {
    currentBlock.push(vnode)
  }

  return vnode
}

由于我们在mout中传入的是组件,该vnode只是对其进行了包装。

Root的render

const render: RootRenderFunction = (vnode, container) => {
    if (vnode == null) {
      if (container._vnode) {
        unmount(container._vnode, null, null, true)
      }
    } else {
      // 这里到了今天的重点
      patch(container._vnode || null, vnode, container)
    }
    flushPostFlushCbs()
    container._vnode = vnode
  }

这个逻辑比较简单:
就是对原_vode和新vnode进行patch操作。

2. patch

const patch: PatchFn = (
    n1,
    n2,
    container,
    anchor = null,
    parentComponent = null,
    parentSuspense = null,
    isSVG = false,
    optimized = false
  ) => {
    // 发现VNode类型不相同直接卸载旧VNode
    if (n1 && !isSameVNodeType(n1, n2)) {
      anchor = getNextHostNode(n1)
      unmount(n1, parentComponent, parentSuspense, true)
      n1 = null //并将n1设置为null,以便后面处理。
    }
    //按照type的类型进行patch
    const { type, shapeFlag } = n2
    switch (type) {
      case Text:
        processText(n1, n2, container, anchor)
        break
      case Comment:
        processCommentNode(n1, n2, container, anchor)
        break
      case Static:
        if (n1 == null) {
          mountStaticNode(n2, container, anchor, isSVG)
        } // static nodes are noop on patch
        break
      case Fragment:
        processFragment(
          n1,
          n2,
          container,
          anchor,
          parentComponent,
          parentSuspense,
          isSVG,
          optimized
        )
        break
      default:
        if (shapeFlag & ShapeFlags.ELEMENT) {
          processElement(
            n1,
            n2,
            container,
            anchor,
            parentComponent,
            parentSuspense,
            isSVG,
            optimized
          )
        } else if (shapeFlag & ShapeFlags.COMPONENT) {
          processComponent(
            n1,
            n2,
            container,
            anchor,
            parentComponent,
            parentSuspense,
            isSVG,
            optimized
          )
        } else if (shapeFlag & ShapeFlags.PORTAL) {
          ;(type as typeof PortalImpl).process(
            n1,
            n2,
            container,
            anchor,
            parentComponent,
            parentSuspense,
            isSVG,
            optimized,
            internals
          )
        } else if (__FEATURE_SUSPENSE__ && shapeFlag & ShapeFlags.SUSPENSE) {
          ;(type as typeof SuspenseImpl).process(
            n1,
            n2,
            container,
            anchor,
            parentComponent,
            parentSuspense,
            isSVG,
            optimized,
            internals
          )
        } else if (__DEV__) {
          warn('Invalid VNode type:', type, `(${typeof type})`)
        }
    }
  }

ptachComponent

processComponent与mountComponent

const processComponent = (
    n1: VNode | null,
    n2: VNode,
    container: RendererElement,
    anchor: RendererNode | null,
    parentComponent: ComponentInternalInstance | null,
    parentSuspense: SuspenseBoundary | null,
    isSVG: boolean,
    optimized: boolean
  ) => {
    if (n1 == null) {
       ...//此处省去COMPONENT_KEPT_ALIVE的处理
       mountComponent(
          n2,
          container,
          anchor,
          parentComponent,
          parentSuspense,
          isSVG
        )
      }
    } else {
      const instance = (n2.component = n1.component)!
      // 判断是否需要更新
      if (shouldUpdateComponent(n1, n2, parentComponent, optimized)) {
        if (
          __FEATURE_SUSPENSE__ &&
          instance.asyncDep &&
          !instance.asyncResolved
        ) {
          updateComponentPreRender(instance, n2)
          return
        } else {
          // normal update
          instance.next = n2
          // in case the child component is also queued, remove it to avoid
          // double updating the same child component in the same flush.
          invalidateJob(instance.update)
          // instance.update is the reactive effect runner.
          instance.update()
        }
      } else {
        // no update needed. just copy over properties
        n2.component = n1.component
        n2.el = n1.el
      }
    }
    if (n2.ref != null && parentComponent) {
      //处理ref
      setRef(n2.ref, n1 && n1.ref, parentComponent, n2.component!.proxy)
    }
  }

上面逻辑比较简单:

  1. 就是如果旧的n1不存在直接挂载n2
  2. 如果n1存在则判断是否需要更新
    2.1 如果需要更新且需要处理异步依赖,则单独处理直接return
    2.2 否则按照通用更新处理:先移除update,然后重新调用update
    3.处理ref

接下来,我们查看mountComponent逻辑。

  const mountComponent: MountComponentFn = (
    initialVNode,
    container,
    anchor,
    parentComponent,
    parentSuspense,
    isSVG
  ) => {
    //此处生成组件内部实例
    const instance: ComponentInternalInstance = (initialVNode.component = createComponentInstance(
      initialVNode,
      parentComponent
    ))
     ...
    // 处理props和slots设置到实例
    setupComponent(instance, parentSuspense)
    ...
    //又是重点了
    setupRenderEffect(
      instance,
      initialVNode,
      container,
      anchor,
      parentSuspense,
      isSVG
    )

  }

上面我们了解到:

  1. 创建一个实例
  2. 处理props和slots,如何处理我们不探究
  3. 调用setupRenderEffect

setupRenderEffect做什么

const setupRenderEffect: SetupRenderEffectFn = (
    instance,
    initialVNode,
    container,
    anchor,
    parentSuspense,
    isSVG
  ) => {
    //创建render的响应式,后期补充vue3.0 effect的文章时在了解。现在暂时认为是直接调用了该方法
    instance.update = effect(function componentEffect() {
      // 当实例没有挂载的话
      if (!instance.isMounted) {
        let vnodeHook: VNodeHook | null | undefined
        const { el, props } = initialVNode
        const { bm, m, a, parent } = instance
        // 这是重点,这里个里面将会生成Fragment类型VNode
        const subTree = (instance.subTree = renderComponentRoot(instance))
        ... //hock处理beforeMount

        if (el && hydrateNode) {
          // vnode has adopted host node - perform hydration instead of mount.
          hydrateNode(
            initialVNode.el as Node,
            subTree,
            instance,
            parentSuspense
          )
        } else {
          // 在调用patch
          patch(
            null,
            subTree,
            container,
            anchor,
            instance,
            parentSuspense,
            isSVG
          )
          initialVNode.el = subTree.el
        }
        // mounted hook
        ...
        
        instance.isMounted = true
      } else {
        // updateComponent
        // This is triggered by mutation of component's own state (next: null)
        // OR parent calling processComponent (next: VNode)
        let { next, bu, u, parent, vnode } = instance
        
        if (next) {
          updateComponentPreRender(instance, next)
        } else {
          next = vnode
        }
        // 这是重点,这里个里面将会生成Fragment类型VNode
        const nextTree = renderComponentRoot(instance)
        const prevTree = instance.subTree
        instance.subTree = nextTree
        next.el = vnode.el
        
        // reset refs
        // only needed if previous patch had refs
        if (instance.refs !== EMPTY_OBJ) {
          instance.refs = {}
        }
        // 也是重新patch
        patch(
          prevTree,
          nextTree,
          // parent may have changed if it's in a portal
          hostParentNode(prevTree.el!)!,
          // anchor may have changed if it's in a fragment
          getNextHostNode(prevTree),
          instance,
          parentSuspense,
          isSVG
        )
        next.el = nextTree.el
        if (next === null) {
          // self-triggered update. In case of HOC, update parent component
          // vnode el. HOC is indicated by parent instance's subTree pointing
          // to child component's vnode
          updateHOCHostEl(instance, nextTree.el)
        }
      }
    }, __DEV__ ? createDevEffectOptions(instance) : prodEffectOptions)
  }

setupRenderEffect做了什么:

  1. 调用renderComponentRoot生成Fragment类型VNodeTree
  2. 调用patch

renderComponentRoot做什么

export function renderComponentRoot(
  instance: ComponentInternalInstance
): VNode {
  const {
    type: Component,
    parent,
    vnode,
    proxy,
    withProxy,
    props,
    slots,
    attrs,
    emit,
    renderCache
  } = instance

  let result
  currentRenderingInstance = instance
  try {
    if (vnode.shapeFlag & ShapeFlags.STATEFUL_COMPONENT) {
      const proxyToUse = withProxy || proxy
      // instance.render 这个就是通过vue-loader将tempalte编译后生成的render
      let vNodeTree = instance.render!.call(proxyToUse, proxyToUse!, renderCache)
      result = normalizeVNode(vNodeTree)
    } else {
      // 处理FunctionalComponent
      const render = Component as FunctionalComponent
      result = normalizeVNode(
        render.length > 1
          ? render(props, {
              attrs,
              slots,
              emit
            })
          : render(props, null as any /* we know it doesn't need it */)
      )
    }

    // 合并attr
    let fallthroughAttrs
    if (
      Component.inheritAttrs !== false &&
      attrs !== EMPTY_OBJ &&
      (fallthroughAttrs = getFallthroughAttrs(attrs))
    ) {
      if (
        result.shapeFlag & ShapeFlags.ELEMENT ||
        result.shapeFlag & ShapeFlags.COMPONENT
      ) {
        result = cloneVNode(result, fallthroughAttrs)
        // If the child root node is a compiler optimized vnode, make sure it
        // force update full props to account for the merged attrs.
        if (result.dynamicChildren) {
          result.patchFlag |= PatchFlags.FULL_PROPS
        }
      }
    }

    //继承 scopeId
    const parentScopeId = parent && parent.type.__scopeId
    if (parentScopeId) {
      result = cloneVNode(result, { [parentScopeId]: '' })
    }
    // inherit directives
    if (vnode.dirs) {
      result.dirs = vnode.dirs
    }
    // inherit transition data
    if (vnode.transition) {
      result.transition = vnode.transition
    }
  } catch (err) {
    handleError(err, instance, ErrorCodes.RENDER_FUNCTION)
    result = createVNode(Comment)
  }
  currentRenderingInstance = null

  return result
}

这里我们知道将会使用:
我们编译出来的render方法,通过传入proxy数据然后生成VNodeTree。

由于整个patch处理会根据Vnode类型进行不同处理,不过逻辑大致相似,所以我下面再选取两个代表型的Vnode类型,我们来了解整个diff。

processElement


  const processElement = (
    n1: VNode | null,
    n2: VNode,
    container: RendererElement,
    anchor: RendererNode | null,
    parentComponent: ComponentInternalInstance | null,
    parentSuspense: SuspenseBoundary | null,
    isSVG: boolean,
    optimized: boolean
  ) => {
    isSVG = isSVG || (n2.type as string) === 'svg'
    // 熟悉的逻辑吧
    if (n1 == null) {
      mountElement(
        n2,
        container,
        anchor,
        parentComponent,
        parentSuspense,
        isSVG,
        optimized
      )
    } else {
      patchElement(n1, n2, parentComponent, parentSuspense, isSVG, optimized)
    }
    if (n2.ref != null && parentComponent) {
      setRef(n2.ref, n1 && n1.ref, parentComponent, n2.el)
    }
  }

来看mountElement做了什么

const mountElement = (
    vnode: VNode,
    container: RendererElement,
    anchor: RendererNode | null,
    parentComponent: ComponentInternalInstance | null,
    parentSuspense: SuspenseBoundary | null,
    isSVG: boolean,
    optimized: boolean
  ) => {
    let el: RendererElement
   
    const {
      type,
      props,
      shapeFlag,
      transition,
      scopeId,
      patchFlag,
      dirs
    } = vnode
    if (
      vnode.el &&
      hostCloneNode !== undefined &&
      patchFlag === PatchFlags.HOISTED
    ) {
      // 对于静态VNode直接clone,因为他不受props影响
      el = vnode.el = hostCloneNode(vnode.el)
    } else {
      // hostCreateElement就是document.createElement创建标签。
      el = vnode.el = hostCreateElement(vnode.type as string, isSVG)
      // 处理props
      if (props) {
        for (const key in props) {
          if (!isReservedProp(key)) {
            // 设置attr
            hostPatchProp(el, key, null, props[key], isSVG)
          }
        }
      }
      //为标签设置scopeId
      if (scopeId) {
        hostSetScopeId(el, scopeId)
      }
      const treeOwnerId = parentComponent && parentComponent.type.__scopeId
      // vnode's own scopeId and the current patched component's scopeId is
      // different - this is a slot content node.
      if (treeOwnerId && treeOwnerId !== scopeId) {
        //设置来自parent的__scopeId
        hostSetScopeId(el, treeOwnerId + '-s')
      }

      //处理children
      if (shapeFlag & ShapeFlags.TEXT_CHILDREN) {
        hostSetElementText(el, vnode.children as string)
      } else if (shapeFlag & ShapeFlags.ARRAY_CHILDREN) {
        mountChildren(
          vnode.children as VNodeArrayChildren,
          el,
          null,
          parentComponent,
          parentSuspense,
          isSVG && type !== 'foreignObject',
          optimized || !!vnode.dynamicChildren
        )
      }
      if (transition && !transition.persisted) {
        transition.beforeEnter(el)
      }
    }
    // 将生成的element挂载到对应位置
    hostInsert(el, container, anchor)
  }
const patchElement = (
    n1: VNode,
    n2: VNode,
    parentComponent: ComponentInternalInstance | null,
    parentSuspense: SuspenseBoundary | null,
    isSVG: boolean,
    optimized: boolean
  ) => {
    const el = (n2.el = n1.el!)
    let { patchFlag, dynamicChildren, dirs } = n2
    const oldProps = (n1 && n1.props) || EMPTY_OBJ
    const newProps = n2.props || EMPTY_OBJ
   
    if (patchFlag > 0) {
      if (patchFlag & PatchFlags.FULL_PROPS) {
        // element props contain dynamic keys, full diff needed
        patchProps(
          el,
          n2,
          oldProps,
          newProps,
          parentComponent,
          parentSuspense,
          isSVG
        )
      } else {
        // this flag is matched when the element has dynamic class bindings.
        if (patchFlag & PatchFlags.CLASS) {
          if (oldProps.class !== newProps.class) {
            hostPatchProp(el, 'class', null, newProps.class, isSVG)
          }
        }

        // style
        // this flag is matched when the element has dynamic style bindings
        if (patchFlag & PatchFlags.STYLE) {
          hostPatchProp(el, 'style', oldProps.style, newProps.style, isSVG)
        }

        // props
        // This flag is matched when the element has dynamic prop/attr bindings
        // other than class and style. The keys of dynamic prop/attrs are saved for
        // faster iteration.
        // Note dynamic keys like :[foo]="bar" will cause this optimization to
        // bail out and go through a full diff because we need to unset the old key
        if (patchFlag & PatchFlags.PROPS) {
          // 只考虑动态的props
          const propsToUpdate = n2.dynamicProps!
          for (let i = 0; i < propsToUpdate.length; i++) {
            const key = propsToUpdate[i]
            const prev = oldProps[key]
            const next = newProps[key]
            if (prev !== next) {
              hostPatchProp(
                el,
                key,
                prev,
                next,
                isSVG,
                n1.children as VNode[],
                parentComponent,
                parentSuspense,
                unmountChildren
              )
            }
          }
        }
      }

      // text
      // This flag is matched when the element has only dynamic text children.
      if (patchFlag & PatchFlags.TEXT) {
        if (n1.children !== n2.children) {
          hostSetElementText(el, n2.children as string)
        }
      }
    } else if (!optimized && dynamicChildren == null) {
      // unoptimized, full diff
      patchProps(
        el,
        n2,
        oldProps,
        newProps,
        parentComponent,
        parentSuspense,
        isSVG
      )
    }

    const areChildrenSVG = isSVG && n2.type !== 'foreignObject'
    if (dynamicChildren) {
      patchBlockChildren(
        n1.dynamicChildren!,
        dynamicChildren,
        el,
        parentComponent,
        parentSuspense,
        areChildrenSVG
      )
    } else if (!optimized) {
      // full diff
      patchChildren(
        n1,
        n2,
        el,
        null,
        parentComponent,
        parentSuspense,
        areChildrenSVG
      )
    }

    if ((vnodeHook = newProps.onVnodeUpdated) || dirs) {
      queuePostRenderEffect(() => {
        vnodeHook && invokeVNodeHook(vnodeHook, parentComponent, n2, n1)
        dirs && invokeDirectiveHook(n2, n1, parentComponent, 'updated')
      }, parentSuspense)
    }
  }

通过上面三个方法我们知道对于element的patch思路是:

  1. 对于n1为null的,直接生成新的element并挂载到对应位置。
  2. 对于n1存在的,为了尽可能减少element不必要的属性修改,所以采用每个props进行对比,
  3. 对于element的Children分别使用mountChildren和patchChildren。

mountChildren

const mountChildren: MountChildrenFn = (
    children,
    container,
    anchor,
    parentComponent,
    parentSuspense,
    isSVG,
    optimized,
    start = 0
  ) => {
    for (let i = start; i < children.length; i++) {
      const child = (children[i] = optimized
        ? cloneIfMounted(children[i] as VNode)
        : normalizeVNode(children[i]))
      patch(
        null,
        child,
        container,
        anchor,
        parentComponent,
        parentSuspense,
        isSVG,
        optimized
      )
    }
  }

mountChildre比较直接遍历使用patch
接下来又是一个重点:

const patchChildren: PatchChildrenFn = (
    n1,
    n2,
    container,
    anchor,
    parentComponent,
    parentSuspense,
    isSVG,
    optimized = false
  ) => {
    const c1 = n1 && n1.children
    const prevShapeFlag = n1 ? n1.shapeFlag : 0
    const c2 = n2.children

    const { patchFlag, shapeFlag } = n2
    if (patchFlag === PatchFlags.BAIL) {
      optimized = false
    }
    // fast path
    if (patchFlag > 0) {
      // 处理带key的fragment
      if (patchFlag & PatchFlags.KEYED_FRAGMENT) {
        // this could be either fully-keyed or mixed (some keyed some not)
        // presence of patchFlag means children are guaranteed to be arrays
        patchKeyedChildren(
          c1 as VNode[],
          c2 as VNodeArrayChildren,
          container,
          anchor,
          parentComponent,
          parentSuspense,
          isSVG,
          optimized
        )
        return
      } else if (patchFlag & PatchFlags.UNKEYED_FRAGMENT) {
       // 处理不key的fragment
        patchUnkeyedChildren(
          c1 as VNode[],
          c2 as VNodeArrayChildren,
          container,
          anchor,
          parentComponent,
          parentSuspense,
          isSVG,
          optimized
        )
        return
      }
      //注意两种fragment处理完直接return了
    }
    
    // children 有三种可能: text, array or no children.
    if (shapeFlag & ShapeFlags.TEXT_CHILDREN) {
      // text children fast path
      if (prevShapeFlag & ShapeFlags.ARRAY_CHILDREN) {
        // 移除内容
        unmountChildren(c1 as VNode[], parentComponent, parentSuspense)
      }
      if (c2 !== c1) {
        // 直接修改内容
        hostSetElementText(container, c2 as string)
      }
    } else {
      if (prevShapeFlag & ShapeFlags.ARRAY_CHILDREN) {
        // prev children was array
        if (shapeFlag & ShapeFlags.ARRAY_CHILDREN) {
          // 对于array形式的调用patchKeyedChildren
          patchKeyedChildren(
            c1 as VNode[],
            c2 as VNodeArrayChildren,
            container,
            anchor,
            parentComponent,
            parentSuspense,
            isSVG,
            optimized
          )
        } else {
          // 新的children为空,则直接卸载
          unmountChildren(c1 as VNode[], parentComponent, parentSuspense, true)
        }
      } else {
        // prev children was text OR null
        // new children is array OR null
        if (prevShapeFlag & ShapeFlags.TEXT_CHILDREN) {
          hostSetElementText(container, '')
        }
        // mount new if array
        if (shapeFlag & ShapeFlags.ARRAY_CHILDREN) {
          mountChildren(
            c2 as VNodeArrayChildren,
            container,
            anchor,
            parentComponent,
            parentSuspense,
            isSVG,
            optimized
          )
        }
      }
    }
  }

先通过类型进行处理:
其核心思路是:将有key和无key单独处理
下面是无key的处理

  const patchUnkeyedChildren = (
    c1: VNode[],
    c2: VNodeArrayChildren,
    container: RendererElement,
    anchor: RendererNode | null,
    parentComponent: ComponentInternalInstance | null,
    parentSuspense: SuspenseBoundary | null,
    isSVG: boolean,
    optimized: boolean
  ) => {
    c1 = c1 || EMPTY_ARR
    c2 = c2 || EMPTY_ARR
    const oldLength = c1.length
    const newLength = c2.length
    const commonLength = Math.min(oldLength, newLength)
    let i
    for (i = 0; i < commonLength; i++) {
      const nextChild = (c2[i] = optimized
        ? cloneIfMounted(c2[i] as VNode)
        : normalizeVNode(c2[i]))
      patch(
        c1[i],
        nextChild,
        container,
        null,
        parentComponent,
        parentSuspense,
        isSVG,
        optimized
      )
    }
    if (oldLength > newLength) {
      // remove old
      unmountChildren(c1, parentComponent, parentSuspense, true, commonLength)
    } else {
      // mount new
      mountChildren(
        c2,
        container,
        anchor,
        parentComponent,
        parentSuspense,
        isSVG,
        optimized,
        commonLength
      )
    }
  }

无key的逻辑比较简单:

  1. 直接遍历n2与n1最小长度:使用patch处理
  2. n1多出来的:unmountChildren
  3. n2多出来的:进行mountChildren

重点来了,有key比较复杂。

  // can be all-keyed or mixed
  const patchKeyedChildren = (
    c1: VNode[],
    c2: VNodeArrayChildren,
    container: RendererElement,
    parentAnchor: RendererNode | null,
    parentComponent: ComponentInternalInstance | null,
    parentSuspense: SuspenseBoundary | null,
    isSVG: boolean,
    optimized: boolean
  ) => {
    let i = 0
    const l2 = c2.length
    let e1 = c1.length - 1 // prev ending index
    let e2 = l2 - 1 // next ending index

    // 1.先从开头遍历,发现不一致则停止
    //如下形式:只遍历到ab
    // (a b) c
    // (a b) d e
    while (i <= e1 && i <= e2) {
      const n1 = c1[i]
      const n2 = (c2[i] = optimized
        ? cloneIfMounted(c2[i] as VNode)
        : normalizeVNode(c2[i]))
      if (isSameVNodeType(n1, n2)) {
        patch(
          n1,
          n2,
          container,
          parentAnchor,
          parentComponent,
          parentSuspense,
          isSVG,
          optimized
        )
      } else {
        break
      }
      i++
    }

    // 2. 接着从后面开始倒着遍历,发现类型不一致就停止。
    // a (b c)
    // d e (b c)
    while (i <= e1 && i <= e2) {
      const n1 = c1[e1]
      const n2 = (c2[e2] = optimized
        ? cloneIfMounted(c2[e2] as VNode)
        : normalizeVNode(c2[e2]))
      if (isSameVNodeType(n1, n2)) {
        patch(
          n1,
          n2,
          container,
          parentAnchor,
          parentComponent,
          parentSuspense,
          isSVG,
          optimized
        )
      } else {
        break
      }
      e1--
      e2--
    }

    // 3. 处理如下形式:即n2在两头多出来的,进行patch(mount)
    // (a b)
    // (a b) c
    // i = 2, e1 = 1, e2 = 2
    // (a b)
    // c (a b)
    // i = 0, e1 = -1, e2 = 0
    if (i > e1) {
      if (i <= e2) {
        const nextPos = e2 + 1
        const anchor = nextPos < l2 ? (c2[nextPos] as VNode).el : parentAnchor
        while (i <= e2) {
          patch(
            null,
            (c2[i] = optimized
              ? cloneIfMounted(c2[i] as VNode)
              : normalizeVNode(c2[i])),
            container,
            anchor,
            parentComponent,
            parentSuspense,
            isSVG
          )
          i++
        }
      }
    }

    // 4. 处理如下形式:即n1在两头多出来的,进行删除
    // (a b) c
    // (a b)
    // i = 2, e1 = 2, e2 = 1
    // a (b c)
    // (b c)
    // i = 0, e1 = 0, e2 = -1
    else if (i > e2) {
      while (i <= e1) {
        unmount(c1[i], parentComponent, parentSuspense, true)
        i++
      }
    }

    // 5. 接下来处理中间部分,
    // [i ... e1 + 1]: a b [c d e] f g
    // [i ... e2 + 1]: a b [e d c h] f g
    // i = 2, e1 = 4, e2 = 5
    else {
      const s1 = i // prev starting index
      const s2 = i // next starting index
      // 由于中间部分不好判断是否有增加或者删除导致的不一致,还是全部替换了
      // 所以采取如下策略
      // 5.1 对于n2的中间部分遍历,并将childVnode与key存入Map中
      const keyToNewIndexMap: Map = new Map()
      for (i = s2; i <= e2; i++) {
        const nextChild = (c2[i] = optimized
          ? cloneIfMounted(c2[i] as VNode)
          : normalizeVNode(c2[i]))
        if (nextChild.key != null) {
          keyToNewIndexMap.set(nextChild.key, i)
        }
      }

      // 5.2 loop through old children left to be patched and try to patch
      // matching nodes & remove nodes that are no longer present
      let j
      let patched = 0
      const toBePatched = e2 - s2 + 1 //n2中间的长度
      let moved = false
      // used to track whether any node has moved
      let maxNewIndexSoFar = 0
      // works as Map
      // Note that oldIndex is offset by +1
      // and oldIndex = 0 is a special value indicating the new node has
      // no corresponding old node.
      // used for determining longest stable subsequence
      const newIndexToOldIndexMap = new Array(toBePatched)
      for (i = 0; i < toBePatched; i++) newIndexToOldIndexMap[i] = 0
      //遍历n1中间的
      for (i = s1; i <= e1; i++) {
        const prevChild = c1[i]
        //如果n2中的已经全部被处理,则直接删除
        // n1 中间的[c d e j k h z w]
        // n2 中间的[e d c h]
        // 如上形式会删除 z w
        if (patched >= toBePatched) {
          // all new children have been patched so this can only be a removal
          unmount(prevChild, parentComponent, parentSuspense, true)
          continue
        }
        //此处获取到n1遍历的prevChild对应的到n2中的newIndex
        let newIndex
        if (prevChild.key != null) {
          newIndex = keyToNewIndexMap.get(prevChild.key)
        } else {
          // key-less node, try to locate a key-less node of the same type
          for (j = s2; j <= e2; j++) {
            if (
              newIndexToOldIndexMap[j - s2] === 0 &&
              isSameVNodeType(prevChild, c2[j] as VNode)
            ) {
              newIndex = j
              break
            }
          }
        }
        //  newIndex不存在,即n2中没找到匹配的,preChild应该删除
         // n1 中间的[c d e j k h]
        // n2 中间的[e d c h]
        // 如上形式会删除 j k 
        if (newIndex === undefined) {
          unmount(prevChild, parentComponent, parentSuspense, true)
        } else {
          //对于匹配到的进行patch
          newIndexToOldIndexMap[newIndex - s2] = i + 1
          if (newIndex >= maxNewIndexSoFar) {
            maxNewIndexSoFar = newIndex
          } else {
            moved = true
          }
          patch(
            prevChild,
            c2[newIndex] as VNode,
            container,
            null,
            parentComponent,
            parentSuspense,
            isSVG,
            optimized
          )
          patched++
        }
      }

      // 5.3 move and mount
       // n1 中间的[c d e]
      // n2 中间的[e d c h]
      //如上 需要对多处来的h进行mount
      // e d c 则需要移动位置
      // i = 2, e1 = 4, e2 = 5
      // generate longest stable subsequence only when nodes have moved
      const increasingNewIndexSequence = moved
        ? getSequence(newIndexToOldIndexMap)
        : EMPTY_ARR
      j = increasingNewIndexSequence.length - 1
      // looping backwards so that we can use last patched node as anchor
      for (i = toBePatched - 1; i >= 0; i--) {
        const nextIndex = s2 + i
        const nextChild = c2[nextIndex] as VNode
        const anchor =
          nextIndex + 1 < l2 ? (c2[nextIndex + 1] as VNode).el : parentAnchor
        if (newIndexToOldIndexMap[i] === 0) {
          // mount new
          patch(
            null,
            nextChild,
            container,
            anchor,
            parentComponent,
            parentSuspense,
            isSVG
          )
        } else if (moved) {
          // move if:
          // There is no stable subsequence (e.g. a reverse)
          // OR current node is not among the stable sequence
          if (j < 0 || i !== increasingNewIndexSequence[j]) {
            move(nextChild, container, anchor, MoveType.REORDER)
          } else {
            j--
          }
        }
      }
    }
  }

好了,至此diff的算法完成了。

总结下patch时diff的处理的

简单来说就是:n1 代表旧节点,n2代表新节点

  1. 如果是单VNode对比:
    1.1 n1为空,则创建n2
    1.2 n2为空,则删除n1
    1.3 n1的类型与n2不一致,则 删除n1创建n2.
    1.4 n1与n2一致,则patch,判断其patch其props,class,attr,进行dom操作
  2. 如果是多节点,且是无key形式
    2.1 取n2与n1最小长度遍历:使用patch处理
    2.2 如果n1多出来的:unmountChildren
    2.3 如果n2多出来的:进行mountChildren
  3. 如果是多节点,有key形式
    3.1 先从开头遍历,类型一致则patch,发现类型不一致则停止。如 (a b) c(a b) d e
    3.2 从尾开始遍历,类型一致则patch,发现类型不一致则停止。 如a c (d f)b a (d f)
    3.3 处理n2两头多出来的部分, 直接mount。如b c(a) b c或者 b cb c (d)
    3.4 处理n1两头多出来的部分, 直接删除。如(a) b cb c或者b c (d)b c
    3.5 处理n1与n2 中间遗留的如b (e f g h) cb (f g k h) c
    3.5.1 将n2中间的 f g k h生成Map
    3.5.2 遍历n1中间的(e f g h)
    3.5.2.1 遍历过程中发现不在n2中,则直接删除。
    3.5.2.2 遍历过程中发现在n2中,则直接patch。并记录n2中位置。后面需要移动位置。
    3.6 对于n2中间的 f g k h新增的如k 进行mount。
    3.7 对于3.5.2.2中的进行移动位置。

我们就知道了,如果有key的话,会通过key筛选,从而明确哪个节点删除/替换/移动尽可能的减少dom操作。但是没有key的话,只能通过遍历,相对而言这种操作dom的情况较多。
比如:a b c d e fb c d e f
这种形式会导致,每个节点都要进行调整操作dom。

看来真的不是简单来说,应该是复杂来说。。。

总结下如何渲染出来内容

由于vue-loader,在编译过程中已经帮我们将template转成了render函数。并将.vue编译成object形式。

  1. 在createApp(rootComponent).mount(el)的时候调用vue的render。
  2. 会将object形式的rootComponent,转换成type为State_Component的VNode_Component。
  3. vue的render会调用patch(VNode_Component)。
  4. 当patch 发现时component,则会调用其实例的render(即template编译后生成的render方法)来生成fragment类型的Vnode,对其patch。
  5. 然后就开启了套娃模式,一层层patch。
  6. 最终调用到mountElement(vNode)形式,去使用document.createElement创建dom节点。

你可能感兴趣的:(3. vue3.0当编译.vue文件如何渲染内容及Diff算法)