旷世奇才发明的数据结构
enum Colour
{
RED,
BLACK,
};
template<class KEY,class VALUE>
struct RBTreeNode
{
RBTreeNode<KEY,VALUE>* _left;
RBTreeNode<KEY, VALUE>* _right;
RBTreeNode<KEY, VALUE>* _parent;
//KEY_VALUE键值对
pair<KEY, VALUE> _Key_Value;
//节点的颜色
Colour _color;
//默认构造红色节点
RBTreeNode(const pair<KEY, VALUE>& KEY_VALUE)
: _left(nullptr)
, _right(nullptr)
, _parent(nullptr)
, _Key_Value(KEY_VALUE)
, _color(RED)
{}
};
红黑树数据结构定义:红黑树满足二叉搜索树的所有性质
红黑树的路径特征值:
平衡性结论1:根据红黑树的定义,设整颗红黑树最长连通路径上节点总个数为X,整颗红黑树最短连通路径上节点总个数为Y,则有 X ≤ 2 Y X\leq2Y X≤2Y
平衡性结论2:根据平衡性结论1,当一颗红黑树的节点个数为N时,红黑树的高度H满足: H ≤ 2 l o g 2 N H\leq 2log_2N H≤2log2N
综上,红黑树具有较好的平衡性,可以实现数据的高速检索.
相比于AVL树,红黑树要更抽象一些,它是根据自身的定义间接地控制树的高度从而保证平衡性
红黑树的插入操作只插入红色节点(插入黑色节点会导致路径特征值改变,不方便数据结构的调整)
bool insert(const Pair& KEYVALUE)
{
if (_root == nullptr)
{
_root = new Node(KEYVALUE);
_root->_color = BLACK;
return true;
}
Node* cur = _root;
Node* parent = nullptr;
//查找插入的位置
while (cur != nullptr)
{
if (cur->_Key_Value.first < KEYVALUE.first)
{
parent = cur;
cur = cur->_right;
}
else if (cur->_Key_Value.first > KEYVALUE.first)
{
parent = cur;
cur = cur->_left;
}
else
{
//KEY值重复,无法插入
return false;
}
}
//找到空位置执行插入
cur = new Node(KEYVALUE);
cur->_color = RED;
if (parent->_Key_Value.first < KEYVALUE.first)
{
//向右孩子插入
parent->_right = cur;
cur->_parent = parent;
}
else
{
parent->_left = cur;
cur->_parent = parent;
}
}
根据uncle的情况的不同可以将最小违规子结构进一步分为三种子情形进行处理:
调整算法整体图解:
根据uncle的情况的不同可以将最小违规子结构进一步分为三种子情形进行处理:
最小违规子结构三号和四号处理方式分别与一号和二号相同(只是旋转方向不同)
enum Colour
{
RED,
BLACK,
};
template<class KEY,class VALUE>
struct RBTreeNode
{
RBTreeNode<KEY,VALUE>* _left;
RBTreeNode<KEY, VALUE>* _right;
RBTreeNode<KEY, VALUE>* _parent;
//KEY_VALUE键值对
pair<KEY, VALUE> _Key_Value;
//节点的颜色
Colour _color;
//默认构造红色节点
RBTreeNode(const pair<KEY, VALUE>& KEY_VALUE)
: _left(nullptr)
, _right(nullptr)
, _parent(nullptr)
, _Key_Value(KEY_VALUE)
, _color(RED)
{}
};
template<class KEY, class VALUE>
class RBTree
{
typedef RBTreeNode<KEY, VALUE> Node;
typedef pair<KEY, VALUE> Pair;
public:
RBTree<KEY, VALUE>()
{
_root = nullptr;
}
//红黑树插入
bool insert(const Pair& KEYVALUE)
{
if (_root == nullptr)
{
_root = new Node(KEYVALUE);
_root->_color = BLACK;
return true;
}
Node* cur = _root;
Node* parent = nullptr;
//查找插入的位置
while (cur != nullptr)
{
if (cur->_Key_Value.first < KEYVALUE.first)
{
parent = cur;
cur = cur->_right;
}
else if (cur->_Key_Value.first > KEYVALUE.first)
{
parent = cur;
cur = cur->_left;
}
else
{
//KEY值重复,无法插入
return false;
}
}
//找到空位置执行插入
cur = new Node(KEYVALUE);
cur->_color = RED;
if (parent->_Key_Value.first < KEYVALUE.first)
{
//向右孩子插入
parent->_right = cur;
cur->_parent = parent;
}
else
{
parent->_left = cur;
cur->_parent = parent;
}
//如果cur的前驱parent是红色节点则我们需要对违规子结构进行迭代调整
while (parent && parent->_color == RED)
{
Node * grandparent = parent->_parent;
//区分最小违规子结构一二和三四号
if (grandparent->_right == parent)
{
Node* uncle = grandparent->_left;
//如果uncle为红色则按照情形(1)变色处理
if (uncle && uncle->_color == RED)
{
uncle->_color = BLACK;
parent->_color = BLACK;
grandparent->_color = RED;
//变色后将grandparent作为新的cur向上层迭代调整(最小违规子结构的逻辑形式不变)
cur = grandparent;
parent = cur->_parent;
}
//情形(2)-->先区分最小违规子结构一号和二号
else if (parent->_right == cur)
{
//一号最小违规子结构-->左单旋+变色
_RotationSL(grandparent);
grandparent->_color = RED;
parent->_color = BLACK;
//子结构的根变为黑色,无需再向上层继续迭代调整
break;
}
else
{
//二号最小违规子结构-->右左双旋+变色
_RotationSR(parent);
_RotationSL(grandparent);
cur->_color = BLACK;
grandparent->_color = RED;
//子结构的根变为黑色,无需再向上层继续迭代调整
break;
}
}
else
{
Node* uncle = grandparent->_right;
//如果uncle为红色则按照情形(1)变色处理
if (uncle && uncle->_color == RED)
{
uncle->_color = BLACK;
parent->_color = BLACK;
grandparent->_color = RED;
//变色后将grandparent作为新的cur向上层迭代调整(最小违规子结构的逻辑形式不变)
cur = grandparent;
parent = cur->_parent;
}
//情形(2)-->先区分最小违规子结构三号和四号
else if (parent->_left == cur)
{
//三号最小违规子结构-->右单旋+变色
_RotationSR(grandparent);
grandparent->_color = RED;
parent->_color = BLACK;
//子结构的根变为黑色,无需再向上层继续迭代调整
break;
}
else
{
//四号最小违规子结构-->左右双旋+变色
_RotationSL(parent);
_RotationSR(grandparent);
cur->_color = BLACK;
grandparent->_color = RED;
//子结构的根变为黑色,无需再向上层继续迭代调整
break;
}
}
}
//根据红黑树性质将根节点调整为黑色
_root->_color = BLACK;
return true;
}
//中序遍历
void Inorder()
{
_Inorder(_root);
std::cout << std :: endl;
}
void _CheckStruct()
{
//求路径特征值
int Benchmark = 0;
Node* tem = _root;
while (tem)
{
if (tem->_color == BLACK)
{
Benchmark++;
}
tem = tem->_left;
}
if (_CheckStruct(_root, 0, Benchmark))
{
std::cout << "StructureLegal" << std::endl;
}
}
private:
//左单旋成员接口
void _RotationSL(Node* parent)
{
//整个子结构的祖先(可能为空,即parent就是整棵树的树根)
Node* Graparent = parent->_parent;
Node* parentR = parent->_right;
//parentR的左子树(可能为空)
Node* parentRLSon = parentR->_left;
//左单旋
parent->_right = parentRLSon;
//注意parentLSon可能为空
if (parentRLSon)
{
parentRLSon->_parent = parent;
}
parentR->_left = parent;
parent->_parent = parentR;
//注意GGraparent可能为空
if (Graparent)
{
if (Graparent->_left == parent)
{
Graparent->_left = parentR;
}
else
{
Graparent->_right = parentR;
}
}
else
{
_root = parentR;
}
parentR->_parent = Graparent;
}
//右单旋成员接口
void _RotationSR(Node* parent)
{
Node* Graparent = parent->_parent;
Node* parentL = parent->_left;
Node* parentLRSon = parentL->_right;
//右单旋
parent->_left = parentLRSon;
if (parentLRSon)
{
parentLRSon->_parent = parent;
}
parentL->_right = parent;
parent->_parent = parentL;
if (Graparent)
{
if (Graparent->_left == parent)
{
Graparent->_left = parentL;
}
else
{
Graparent->_right = parentL;
}
}
else
{
_root = parentL;
}
parentL->_parent = Graparent;
}
//中序遍历搜索树
void _Inorder(Node * root)
{
if (root == nullptr)
{
return;
}
_Inorder(root->_left);
std::cout << root->_Key_Value.first << ' ';
_Inorder(root->_right);
}
//检查红黑树结构的合法性
bool _CheckStruct(Node* root,int BlackNum,const int& benchmark)
{
if (root == nullptr)
{
//检查各路径的黑色节点数量是否相同
if (BlackNum == benchmark)
{
std::cout << "BlackNum:" << BlackNum << std::endl;
return true;
}
else
{
return false;
}
}
else if (root->_color == BLACK)
{
BlackNum++;
}
else if (root->_color == RED)
{
//检查红色节点在某条路径上是否连续出现
if (root->_parent && root->_parent->_color == RED)
{
return false;
}
}
return _CheckStruct(root->_left, BlackNum, benchmark) && _CheckStruct(root->_right, BlackNum, benchmark);
}
private:
Node* _root;
};