[CS231n Assignment 3 #00] 第三次作业介绍

1.作业介绍

  • 作业主页:Assignment #3
  • 作业任务:在这次作业中,你将实现循环网络,并将它们应用于微软COCO数据集上的图像字幕。您还将探索在ImageNet上可视化预训练模型的特征的方法,以及实现风格迁移Style Transfer模型。最后,您将训练一个生成式对抗网络来生成看起来像训练数据集的图像!
  • 作业目的:
    • 理解递归神经网络(RNNs)的结构,以及它们如何通过随时间共享权值对序列进行操作;
    • 理解并实现普通的RNNs和长短期记忆(LSTM)网络;
    • 了解如何结合卷积神经网络和递归网络来实现一个图像字幕系统;
    • 探索图像梯度的各种应用,包括显著性映射(saliency maps),欺骗图像(fooling images),类可视化(class visualizations)。
    • 理解并实现图像风格转换技术。
    • 了解如何训练和实现生成式对抗网络(GAN),以生成类似于数据集样本的图像。

2.作业内容

  • 00 下载数据
    运行cd cs231n/datasets ./get_assignment3_data.sh下载 the COCO captioning data, pretrained SqueezeNet model (TensorFlow-only), and a few ImageNet validation images。(Windows用户也可以自己去对应的文件找相关连接手动下载)

  • 01 使用简单的RNN完成图像字幕(Image Captioning with Vanilla RNNs )
    The Jupyter notebook RNN_Captioning.ipynb will walk you through the implementation of an image captioning system on MS-COCO using vanilla recurrent networks.

  • 02 使用LSTM完成图像字幕(Image Captioning with LSTMs )
    The Jupyter notebook LSTM_Captioning.ipynb will walk you through the implementation of Long-Short Term Memory (LSTM) RNNs, and apply them to image captioning on MS-COCO.

  • 03 网络可视化:显著映射、类可视化和欺骗图像(Network Visualization: Saliency maps, Class Visualization, and Fooling Images)
    The Jupyter notebooks NetworkVisualization-TensorFlow.ipynb /NetworkVisualization-PyTorch.ipynb will introduce the pretrained SqueezeNet model, compute gradients with respect to images, and use them to produce saliency maps and fooling images.

  • 04 风格迁移(Style Transfer)
    In the Jupyter notebooks StyleTransfer-TensorFlow.ipynb/StyleTransfer-PyTorch.ipynb you will learn how to create images with the content of one image but the style of another.

  • 05 生成对抗网络(Generative Adversarial Networks)
    In the Jupyter notebooks GANS-TensorFlow.ipynb/GANS-PyTorch.ipynb you will learn how to generate images that match a training dataset, and use these models to improve classifier performance when training on a large amount of unlabeled data and a small amount of labeled data.

你可能感兴趣的:(#,CS231n,深度学习,计算机视觉)