欢迎来到本博客❤️❤️
博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
本文目录如下:
目录
1 概述
2 运行结果
3 Matlab代码实现
4 参考文献
从高光谱图像中提取纯端体是目标检测、分类和解混应用中非常重要的步骤。利用凸几何的概念,提出了一种新的端部提取算法。该算法使用凸多边形最大化来确定一个凸集,该凸集根据测量员的公式给出最大的凸多边形面积。所提算法的并行实现有助于找到更有效的独特像素。通过合成数据证明了所提算法在存在噪声时的鲁棒性。利用真实高光谱数据进行的仿真结果表明,所提算法将光谱角度误差(SAE)和光谱信息发散误差(SID)降低了2.4–8.8%。所提算法在丰度映射中的有效性也使用均方根误差(RMSE)进行了验证。所提算法的RMSE也提高了1.7–7.6%。
部分代码:
%% demo_CPM
clc;
close all;
clear all;
addpath('../data');
%% Image Read
s=load('Cuprite.mat'); % link for data source : https://rslab.ut.ac.ir/data
p=s.nRow;
q=s.nCol;
Bands=188;
Y=s.Y;
x=hyperConvert3d(Y,p,q,Bands);
%% Virtual Dimension
VD=12;
%% CPM algorithm
[endmemberindex] = CPM(Y,VD);
endmemberindex_CPM=change_index(endmemberindex,p,q);
%% VCA algorithm
[U_VCA,e_index,snrEstimate]=hyperVca(Y,VD);
endmemberindex_VCA=change_index(e_index,p,q);
%% gt compare
t1=load('groundTruth_Cuprite_nEnd12.mat');
gt=t1.M;
n1=gt(3:103,:);
n2=gt(114:147,:);
n3=gt(168:220,:);
gt=[n1;n2;n3];
[gt_m,gt_n]=size(gt);
for i=1:gt_n
for j=1:Bands
extracted_VCA(j,i)=x(endmemberindex_VCA(i,1),endmemberindex_VCA(i,2),j);
extracted_CPM(j,i)=x(endmemberindex_CPM(i,1),endmemberindex_CPM(i,2),j);
end
end
%% SAM Calculation
ex_n=gt_n;
store_VCA=[0,0];
store_CPM=[0,0];
sam_VCA=0;
sam_CPM=0;
sam_total_VCA=0;
sam_total_CPM=0;
for i=1:gt_n
for j=1:ex_n
Mat_SAM_CPM(i,j)=real(acos(dot(gt(:,i),extracted_CPM(:,j))/(norm(gt(:,i)*norm(extracted_CPM(:,j))))));
Mat_SAM_VCA(i,j)=real(acos(dot(gt(:,i),extracted_VCA(:,j))/(norm(gt(:,i)*norm(extracted_VCA(:,j))))));
end
end
for i=1:gt_n
%CPM
[max_value1,mrow]=min(Mat_SAM_CPM);
[max_value,col_CPM]=min(max_value1);
sam_total_CPM=sam_total_CPM+max_value;
sam_CPM=[sam_CPM;max_value];
row_CPM=mrow(col_CPM);
s1=[row_CPM,col_CPM];
store_CPM=[store_CPM;s1];
save_CPM(row_CPM)=max_value;
Mat_SAM_CPM(row_CPM,:)=[100*ones];
Mat_SAM_CPM(:,col_CPM)=[100*ones];
%VCA
[max_value1,mrow]=min(Mat_SAM_VCA);
[max_value,col_VCA]=min(max_value1);
sam_total_VCA=sam_total_VCA+max_value;
sam_VCA=[sam_VCA;max_value];
row_VCA=mrow(col_VCA);
s1=[row_VCA,col_VCA];
store_VCA=[store_VCA;s1];
save_VCA(row_VCA)=max_value;
Mat_SAM_VCA(row_VCA,:)=[100*ones];
Mat_SAM_VCA(:,col_VCA)=[100*ones];
end
rms_sae=[rms(save_CPM);
rms(save_VCA)];
rms_sae = radtodeg(rms_sae);
disp('RMSSAE of VCA');
disp(rms_sae(2));
disp('RMSSAE of CPM');
disp(rms_sae(1));
部分理论来源于网络,如有侵权请联系删除。
[1]Dharambhai Shah, Tanish Zaveri, Yogesh Trivedi (2020) Convex Polygon Maximization-Based Hyperspectral Endmember Extraction Algorithm