- 探索未来,大规模分布式深度强化学习——深入解析IMPALA架构
汤萌妮Margaret
探索未来,大规模分布式深度强化学习——深入解析IMPALA架构scalable_agent项目地址:https://gitcode.com/gh_mirrors/sc/scalable_agent在当今的人工智能研究前沿,深度强化学习(DRL)因其在复杂任务中的卓越表现而备受瞩目。本文要介绍的是一个开源于GitHub的重量级项目:“ScalableDistributedDeep-RLwithImp
- 7. 深度强化学习:智能体的学习与决策
Network_Engineer
机器学习学习机器学习深度学习神经网络python算法
引言深度强化学习结合了强化学习与深度学习的优势,通过智能体与环境的交互,使得智能体能够学习最优的决策策略。深度强化学习在自动驾驶、游戏AI、机器人控制等领域表现出色,推动了人工智能的快速发展。本篇博文将深入探讨深度强化学习的基本框架、经典算法(如DQN、策略梯度法),以及其在实际应用中的成功案例。1.强化学习的基本框架强化学习是机器学习的一个分支,专注于智能体在与环境的交互过程中,学习如何通过最大
- 深度强化学习之DQN-深度学习与强化学习的成功结合
CristianoC
目录概念深度学习与强化学习结合的问题DQN解决结合出现问题的办法DQN算法流程总结一、概念原因:在普通的Q-Learning中,当状态和动作空间是离散且维数不高的时候可以使用Q-Table来存储每个状态动作对应的Q值,而当状态和动作空间是高维连续时,使用Q-Table不现实。一是因为当问题复杂后状态太多,所需内存太大;二是在这么大的表格中查询对应的状态也是一件很耗时的事情。image通常的做法是把
- (18-1)基于深度强化学习的股票交易模型:项目介绍+准备环境
码农三叔
强化学习从入门到实践人工智能深度学习股票交易模型DRLDoubleDQNDuelingDQN
在本章的这个项目中,实现了一个用于股票交易的DRL模型,旨在展示DRL在金融领域的潜力,提供其在股票交易中应用的实际例子。希望通过本章内容的学习,能够为那些对金融与机器学习交叉领域感兴趣的人士提供有益的参考。1.1项目介绍在金融市场中,股票交易是一项充满挑战的任务,需要在高度波动和复杂的市场环境中做出快速且精准的决策。传统的交易策略通常依赖于经验、基本面分析或技术分析。然而,这些方法往往无法在快速
- 人工智能&机器学习&深度学习
AA杂货铺111
机器学习:一切通过优化方法挖掘数据中规律的学科。深度学习:一切运用了神经网络作为参数结构进行优化的机器学习算法。强化学习:不仅能利用现有数据,还可以通过对环境的探索获得新数据,并利用新数据循环往复地更新迭代现有模型的机器学习算法。学习是为了更好地对环境进行探索,而探索是为了获取数据进行更好的学习。深度强化学习:一切运用了神经网络作为参数结构进行优化的强化学习算法。人工智能定义与分类人工智能(Art
- 学习日志6
Simon#0209
学习
关于量子强化学习:论文Variational_Quantum_Circuits_for_Deep_Reinforcement_Learning:变分量子电路在深度强化学习中的应用论文主要内容:将经典深度强化学习算法(如经验重放和目标网络)重塑为变分量子电路的表示摘要当前最先进的机器学习方法基于经典冯·诺伊曼计算架构,并在许多工业和学术领域得到广泛应用。随着量子计算的发展,研究人员和技术巨头们试图为
- 【科技前沿】用深度强化学习优化电网,让电力调度更聪明!
风清扬雨
人工智能人工智能python智能电网深度强化学习
Hey小伙伴们,今天我要跟大家分享一个超级酷炫的技术应用——深度强化学习在电网优化中的典型案例!如果你对机器学习感兴趣,或是正寻找如何用AI技术解决实际问题的方法,这篇分享绝对不容错过!✨开场白大家好,我是你们的技术小助手!今天我们要聊的是如何利用深度强化学习(DRL)来优化电网的调度,让电力系统变得更智能、更高效。引入话题想象一下,如果你能够通过一种先进的技术手段,自动调整电网中的能源分配,不
- 基于人工智能的期权量化交易
阿岛格
人工智能.量化投资人工智能机器学习大数据强化学习
基于人工智能的期权量化交易基于人工智能的期权量化交易基于人工智能的期权量化交易该文基于人工智能AI的深度强化学习,进行股票期权的量化投资策略研究及回测评估。作者建立了人工智能学习及交易系统。基于实时/历史期权行情大数据挖掘,通过自行开发的人工智能多agent强化学习模型及评估系统(基于Python/Linux),对接实时交易接口进行了实盘环境的交易回测和评估。专题:人工智能.量化投资纲要:一、前言
- 强化学习入门到不想放弃-1
周博洋K
人工智能
本来想写到深度学习里的,但是线下和别人聊RLHF,和PPO,DPO的时候,我发现大家一脑袋问号,其实也正常,深度学习里面数学的东西没那么多,入门容易一点,强化学习(现在也都谈强化深度学习,或者深度强化学习了)反而没那么要算力,要一堆算法和数学,所以就单开一个系列,专门写强化学习吧其实强化学习,某种程度上比深度学习更早的走进大家的视野,没错,就是那个把李昌镐,柯洁给打败的Alpha第一课我们先讲点基
- 王树森:学 DRL 走过的弯路太多,想让大家避开(文末赠送福利)
人工智能与算法学习
大家都知道,深度强化学习(DeepReinforcementLearning,DRL)就是应用了神经网络的强化学习。而强化学习是机器学习的一个分支,研究如何基于对环境的观测做出决策,以最大化长期回报。从20世纪80年代至今,强化学习一直是机器学习领域的热门研究方向。大家耳熟能详的经典强化学习方法——Q学习、REINFORCE、actor-critic——就是20世纪80年代提出的,一直沿用至今。而
- 深度强化学习系列【1】- 强化学习的背景、基础理论等
cnjs1994
人工智能自动驾驶
引言:这篇博客主要是学习清华大学车辆学院李升波老师(ShengboEbenLi)的PPT课件的一些心得体会。深度强化学习系列【1】-强化学习的背景、基础理论等1.深度强化学习的背景、发展与理论变迁1.1序1.2AlphaGo的崛起1.3Waymo(谷歌收购)加州公共道路无人驾驶项目获批1.4关于生物的神经元数1.5AI的主要类别2.一些典型的问题2.1如何求解-连续、离散空间下的序列决策优化问题?
- 深度强化学习基础【1】-动态规划问题初探(leetcode算法的63题-不同路径II)
cnjs1994
算法动态规划leetcode
引言:这篇博客的算法问题来源于leetcode算法的63题,一个网格世界的机器人运动规划问题。通过这篇博客可以使得读者更加了解强化学习关于动态规划方面的基础知识。这深度强化学习基础【1】-动态规划问题初探(leetcode算法的63题-不同路径II)1.问题描述2.问题分析3.Python编程实现3.1For循环遍历3.2滚动数组实现3.3试验测试结果1.问题描述1个机器人位于一个mxn网格的左上
- PyTorch 2.2 中文官方教程(八)
绝不原创的飞龙
人工智能pytorch
训练一个玛丽奥玩游戏的RL代理原文:pytorch.org/tutorials/intermediate/mario_rl_tutorial.html译者:飞龙协议:CCBY-NC-SA4.0注意点击这里下载完整的示例代码作者:冯元松,SurajSubramanian,王浩,郭宇章。这个教程将带你了解深度强化学习的基础知识。最后,你将实现一个能够自己玩游戏的AI马里奥(使用双深度Q网络)。虽然这个
- 深度强化学习——基本概念(1)
Tandy12356_
深度强化学习人工智能深度学习神经网络
一、基本概念1、状态、动作、智能体可以认为状态就是第一张图的环境,虽然状态和observation还是有区别智能体Agent是马里奥,动作Action就是上下左右的运动2、策略函数(policyΠ)强化学习的重点就是求出这个策略函数,使得在任意一个给定状态S可以做出最应该采取的动作,只要有了policy函数,就可以让超级玛丽自动做出动作来打赢游戏,agent的动作是随机的,根据policy输出的概
- OpenAI Gym 高级教程——深度强化学习库的高级用法
Echo_Wish
Python算法Python笔记python算法开发语言
PythonOpenAIGym高级教程:深度强化学习库的高级用法在本篇博客中,我们将深入探讨OpenAIGym高级教程,重点介绍深度强化学习库的高级用法。我们将使用TensorFlow和StableBaselines3这两个流行的库来实现深度强化学习算法,以及Gym提供的环境。1.安装依赖首先,确保你已经安装了OpenAIGym、TensorFlow和StableBaselines3:pipins
- 论文阅读-一种用于大规模分布式文件系统中基于深度强化学习的自适应元数据管理方案
向来痴_
论文阅读
名称:AnAdaptiveMetadataManagementSchemeBasedonDeepReinforcementLearningforLarge-ScaleDistributedFileSystemsI.引言如今,大型集群文件系统的规模已达到PB甚至EB级别,由此产生的数据呈指数级增长。系统架构师不断设计和优化技术和方法,以向用户提供理想的服务。在这种情况下,元数据管理在提高系统性能中扮
- 机器学习---强化学习---目前的坑
Iverson_henry
当前(2019年)机器学习中有哪些研究方向特别的坑?微尘强化学习MAB嗑盐ing;nlp/推荐系统预备卒53人赞同了该回答深度强化学习~1.深度强化学习可能是非常采样低效的(sampleinefficient):强化学习也有其规划谬误,学习一个策略通常需要比想象更多的样本。在DeepMind的跑酷论文(EmergenceofLocomotionBehavioursinRichEnvironment
- 深度强化学习(王树森)笔记11
阿正的梦工坊
ReinforcementLearning强化学习
深度强化学习(DRL)本文是学习笔记,如有侵权,请联系删除。本文在ChatGPT辅助下完成。参考链接DeepReinforcementLearning官方链接:https://github.com/wangshusen/DRL源代码链接:https://github.com/DeepRLChinese/DeepRL-ChineseB站视频:【王树森】深度强化学习(DRL)豆瓣:深度强化学习文章目录
- 时空AI技术:深度强化学习在智能城市领域应用介绍
JUST极客
深度强化学习是近年来热起来的一项技术。深度强化学习的控制与决策流程必须包含状态,动作,奖励是三要素。在建模过程中,智能体根据环境的当前状态信息输出动作作用于环境,然后接收到下一时刻状态信息和奖励。以众所周知的AlphaGo为例,盘面就是当前的状态,动作就是下一步往哪里落子,奖励就是最终的输赢。整个强化学习过程就是不断与环境交互,在交互的过程中产生数据,并利用这些交互产生的数据来学习的过程。正是在深
- 使用Isaac Gym 来强化学习mycobot 机械臂执行抓取任务
大象机器人
协作机器人桌面六轴机械臂人工智能机器人人工智能python计算机视觉
我现在将介绍一个利用myCobot的实验。这一次,实验将使用模拟器而不是物理机器进行。当尝试使用机器人进行深度强化学习时,在物理机器上准备大量训练数据可能具有挑战性。但是,使用模拟器,很容易收集大量数据集。然而,对于那些不熟悉它们的人来说,模拟器可能看起来令人生畏。因此,我们尝试使用由Nvidia开发的IsaacGym,它使我们能够实现从创建实验环境到仅使用Python代码进行强化学习的所有目标。
- 一起学习飞桨 深度强化学习算法DQN
路人与大师
学习paddlepaddle算法
LEARN_FREQ=5#trainingfrequencyMEMORY_SIZE=200000MEMORY_WARMUP_SIZE=200BATCH_SIZE=64LEARNING_RATE=0.0005GAMMA=0.99#trainanepisodedefrun_train_episode(agent,env,rpm):total_reward=0obs=env.reset()step=0w
- icra2021 reinforcement learning paper list
吃醋不吃辣的雷儿
reinforcementlearningAutonomousVehicleNavigationDeepReinforcementLearningforMaplessNavigationofaHybridAerialUnderwaterVehiclewithMediumTransition自从在Atari类游戏中将深度Q学习应用于连续动作域以来,用于运动控制的深度强化学习(Deep-RL)技术得到
- 深度强化学习(王树森)笔记09
阿正的梦工坊
ReinforcementLearning强化学习
深度强化学习(DRL)本文是学习笔记,如有侵权,请联系删除。本文在ChatGPT辅助下完成。参考链接DeepReinforcementLearning官方链接:https://github.com/wangshusen/DRL源代码链接:https://github.com/DeepRLChinese/DeepRL-ChineseB站视频:【王树森】深度强化学习(DRL)豆瓣:深度强化学习文章目录
- 深度强化学习(王树森)笔记07
阿正的梦工坊
ReinforcementLearning强化学习
深度强化学习(DRL)本文是学习笔记,如有侵权,请联系删除。本文在ChatGPT辅助下完成。参考链接DeepReinforcementLearning官方链接:https://github.com/wangshusen/DRL源代码链接:https://github.com/DeepRLChinese/DeepRL-ChineseB站视频:【王树森】深度强化学习(DRL)豆瓣:深度强化学习文章目录
- 深度强化学习基本概念-王树森课程笔记
淀粉爱好者
机器学习深度学习
学习资料:深度强化学习课程-王树森目录一、概率论知识二、强化学习专业术语三、强化学习的随机性来源1.action2.statetransition四、Rewards,Returns&ValueFuctions1.Return2.ValueFunction五、强化学习用AI控制agent1.Policy-basedlearning2.Value-basedlearning一、概率论知识RandomV
- 深度强化学习 _Actor-Critic 王树森课程笔记
淀粉爱好者
神经网络深度学习机器学习
Actor-CriticMethod一、ValueNetwokandPolicyNetwork1.Policynetwork(Actor):π(a∣s;θ)\pi(a|s;\bm\theta)π(a∣s;θ)2.Valuenetwork(Critic):q(s,a;w)q(s,a;\textbf{w})q(s,a;w)二、训练神经网络1.用TD算法更新价值网络2.用策略梯度算法更新策略网络三、Ac
- 深度强化学习(王树森版)学习笔记(一)——机器学习基础
向南而行灬
机器学习人工智能深度学习
前言由于本人的工作与深度强化学习相关,想找个机会重新复习下深度强化学习的相关知识,正好手上有这本书,粗略一看感觉知识点挺简洁的,内容也挺全面,也提供了一些学习资料。所以开个坑记录一下这本书的学习过程。这本书的相关资料(PPT,源代码)可以在以下链接获取:https://www.ituring.com.cn/book/2982首先我们会按照这本书的顺序讲一下机器学习的一些基础理论部分。1.1线性模型
- 深度强化学习(王树森)笔记06
阿正的梦工坊
ReinforcementLearning强化学习
深度强化学习(DRL)本文是学习笔记,如有侵权,请联系删除。本文在ChatGPT辅助下完成。参考链接DeepReinforcementLearning官方链接:https://github.com/wangshusen/DRL源代码链接:https://github.com/DeepRLChinese/DeepRL-ChineseB站视频:【王树森】深度强化学习(DRL)豆瓣:深度强化学习文章目录
- 深度强化学习_AlphaGo 王树森课程笔记
淀粉爱好者
深度学习机器学习人工智能
AlphaGo一、游戏规则二、设计思路三、Training1.策略网络1.1State(ofAlphaGoZero)1.2PolicyNetwork1.3BehaviorCloning1.4策略梯度2.价值网络2.1PolicyValueNetworks(AlphaGoZero)2.2训练价值网络四、Execution:MonteCarloTreeSearch1.主要思想2.MCTS步骤2.1St
- 深度强化学习之价值学习-王树森课程笔记
淀粉爱好者
机器学习神经网络深度学习
学习资料深度强化学习课程-王树森目录一、Value-basedlearning二、DeepQ-Network(DQN)1.原理2.DQN结构(以超级玛丽为例)3.用DQN操作Agent打游戏三、TemporalDifferenceLearning(TD算法)1.原始算法(类似BP)2.TD算法3.用TD算法学习DQN3.1应用条件3.2更新模型参数【基本思想】学习一个函数来近似Q∗Q^*Q∗函数一
- 数据采集高并发的架构应用
3golden
.net
问题的出发点:
最近公司为了发展需要,要扩大对用户的信息采集,每个用户的采集量估计约2W。如果用户量增加的话,将会大量照成采集量成3W倍的增长,但是又要满足日常业务需要,特别是指令要及时得到响应的频率次数远大于预期。
&n
- 不停止 MySQL 服务增加从库的两种方式
brotherlamp
linuxlinux视频linux资料linux教程linux自学
现在生产环境MySQL数据库是一主一从,由于业务量访问不断增大,故再增加一台从库。前提是不能影响线上业务使用,也就是说不能重启MySQL服务,为了避免出现其他情况,选择在网站访问量低峰期时间段操作。
一般在线增加从库有两种方式,一种是通过mysqldump备份主库,恢复到从库,mysqldump是逻辑备份,数据量大时,备份速度会很慢,锁表的时间也会很长。另一种是通过xtrabacku
- Quartz——SimpleTrigger触发器
eksliang
SimpleTriggerTriggerUtilsquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208166 一.概述
SimpleTrigger触发器,当且仅需触发一次或者以固定时间间隔周期触发执行;
二.SimpleTrigger的构造函数
SimpleTrigger(String name, String group):通过该构造函数指定Trigger所属组和名称;
Simpl
- Informatica应用(1)
18289753290
sqlworkflowlookup组件Informatica
1.如果要在workflow中调用shell脚本有一个command组件,在里面设置shell的路径;调度wf可以右键出现schedule,现在用的是HP的tidal调度wf的执行。
2.designer里面的router类似于SSIS中的broadcast(多播组件);Reset_Workflow_Var:参数重置 (比如说我这个参数初始是1在workflow跑得过程中变成了3我要在结束时还要
- python 获取图片验证码中文字
酷的飞上天空
python
根据现成的开源项目 http://code.google.com/p/pytesser/改写
在window上用easy_install安装不上 看了下源码发现代码很少 于是就想自己改写一下
添加支持网络图片的直接解析
#coding:utf-8
#import sys
#reload(sys)
#sys.s
- AJAX
永夜-极光
Ajax
1.AJAX功能:动态更新页面,减少流量消耗,减轻服务器负担
2.代码结构:
<html>
<head>
<script type="text/javascript">
function loadXMLDoc()
{
.... AJAX script goes here ...
- 创业OR读研
随便小屋
创业
现在研一,有种想创业的想法,不知道该不该去实施。因为对于的我情况这两者是矛盾的,可能就是鱼与熊掌不能兼得。
研一的生活刚刚过去两个月,我们学校主要的是
- 需求做得好与坏直接关系着程序员生活质量
aijuans
IT 生活
这个故事还得从去年换工作的事情说起,由于自己不太喜欢第一家公司的环境我选择了换一份工作。去年九月份我入职现在的这家公司,专门从事金融业内软件的开发。十一月份我们整个项目组前往北京做现场开发,从此苦逼的日子开始了。
系统背景:五月份就有同事前往甲方了解需求一直到6月份,后续几个月也完
- 如何定义和区分高级软件开发工程师
aoyouzi
在软件开发领域,高级开发工程师通常是指那些编写代码超过 3 年的人。这些人可能会被放到领导的位置,但经常会产生非常糟糕的结果。Matt Briggs 是一名高级开发工程师兼 Scrum 管理员。他认为,单纯使用年限来划分开发人员存在问题,两个同样具有 10 年开发经验的开发人员可能大不相同。近日,他发表了一篇博文,根据开发者所能发挥的作用划分软件开发工程师的成长阶段。
初
- Servlet的请求与响应
百合不是茶
servletget提交java处理post提交
Servlet是tomcat中的一个重要组成,也是负责客户端和服务端的中介
1,Http的请求方式(get ,post);
客户端的请求一般都会都是Servlet来接受的,在接收之前怎么来确定是那种方式提交的,以及如何反馈,Servlet中有相应的方法, http的get方式 servlet就是都doGet(
- web.xml配置详解之listener
bijian1013
javaweb.xmllistener
一.定义
<listener>
<listen-class>com.myapp.MyListener</listen-class>
</listener>
二.作用 该元素用来注册一个监听器类。可以收到事件什么时候发生以及用什么作为响
- Web页面性能优化(yahoo技术)
Bill_chen
JavaScriptAjaxWebcssYahoo
1.尽可能的减少HTTP请求数 content
2.使用CDN server
3.添加Expires头(或者 Cache-control) server
4.Gzip 组件 server
5.把CSS样式放在页面的上方。 css
6.将脚本放在底部(包括内联的) javascript
7.避免在CSS中使用Expressions css
8.将javascript和css独立成外部文
- 【MongoDB学习笔记八】MongoDB游标、分页查询、查询结果排序
bit1129
mongodb
游标
游标,简单的说就是一个查询结果的指针。游标作为数据库的一个对象,使用它是包括
声明
打开
循环抓去一定数目的文档直到结果集中的所有文档已经抓取完
关闭游标
游标的基本用法,类似于JDBC的ResultSet(hasNext判断是否抓去完,next移动游标到下一条文档),在获取一个文档集时,可以提供一个类似JDBC的FetchSize
- ORA-12514 TNS 监听程序当前无法识别连接描述符中请求服务 的解决方法
白糖_
ORA-12514
今天通过Oracle SQL*Plus连接远端服务器的时候提示“监听程序当前无法识别连接描述符中请求服务”,遂在网上找到了解决方案:
①打开Oracle服务器安装目录\NETWORK\ADMIN\listener.ora文件,你会看到如下信息:
# listener.ora Network Configuration File: D:\database\Oracle\net
- Eclipse 问题 A resource exists with a different case
bozch
eclipse
在使用Eclipse进行开发的时候,出现了如下的问题:
Description Resource Path Location TypeThe project was not built due to "A resource exists with a different case: '/SeenTaoImp_zhV2/bin/seentao'.&
- 编程之美-小飞的电梯调度算法
bylijinnan
编程之美
public class AptElevator {
/**
* 编程之美 小飞 电梯调度算法
* 在繁忙的时间,每次电梯从一层往上走时,我们只允许电梯停在其中的某一层。
* 所有乘客都从一楼上电梯,到达某层楼后,电梯听下来,所有乘客再从这里爬楼梯到自己的目的层。
* 在一楼时,每个乘客选择自己的目的层,电梯则自动计算出应停的楼层。
* 问:电梯停在哪
- SQL注入相关概念
chenbowen00
sqlWeb安全
SQL Injection:就是通过把SQL命令插入到Web表单递交或输入域名或页面请求的查询字符串,最终达到欺骗服务器执行恶意的SQL命令。
具体来说,它是利用现有应用程序,将(恶意)的SQL命令注入到后台数据库引擎执行的能力,它可以通过在Web表单中输入(恶意)SQL语句得到一个存在安全漏洞的网站上的数据库,而不是按照设计者意图去执行SQL语句。
首先让我们了解什么时候可能发生SQ
- [光与电]光子信号战防御原理
comsci
原理
无论是在战场上,还是在后方,敌人都有可能用光子信号对人体进行控制和攻击,那么采取什么样的防御方法,最简单,最有效呢?
我们这里有几个山寨的办法,可能有些作用,大家如果有兴趣可以去实验一下
根据光
- oracle 11g新特性:Pending Statistics
daizj
oracledbms_stats
oracle 11g新特性:Pending Statistics 转
从11g开始,表与索引的统计信息收集完毕后,可以选择收集的统信息立即发布,也可以选择使新收集的统计信息处于pending状态,待确定处于pending状态的统计信息是安全的,再使处于pending状态的统计信息发布,这样就会避免一些因为收集统计信息立即发布而导致SQL执行计划走错的灾难。
在 11g 之前的版本中,D
- 快速理解RequireJs
dengkane
jqueryrequirejs
RequireJs已经流行很久了,我们在项目中也打算使用它。它提供了以下功能:
声明不同js文件之间的依赖
可以按需、并行、延时载入js库
可以让我们的代码以模块化的方式组织
初看起来并不复杂。 在html中引入requirejs
在HTML中,添加这样的 <script> 标签:
<script src="/path/to
- C语言学习四流程控制if条件选择、for循环和强制类型转换
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i, j;
scanf("%d %d", &i, &j);
if (i > j)
printf("i大于j\n");
else
printf("i小于j\n");
retu
- dictionary的使用要注意
dcj3sjt126com
IO
NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
user.user_id , @"id",
user.username , @"username",
- Android 中的资源访问(Resource)
finally_m
xmlandroidStringdrawablecolor
简单的说,Android中的资源是指非代码部分。例如,在我们的Android程序中要使用一些图片来设置界面,要使用一些音频文件来设置铃声,要使用一些动画来显示特效,要使用一些字符串来显示提示信息。那么,这些图片、音频、动画和字符串等叫做Android中的资源文件。
在Eclipse创建的工程中,我们可以看到res和assets两个文件夹,是用来保存资源文件的,在assets中保存的一般是原生
- Spring使用Cache、整合Ehcache
234390216
springcacheehcache@Cacheable
Spring使用Cache
从3.1开始,Spring引入了对Cache的支持。其使用方法和原理都类似于Spring对事务管理的支持。Spring Cache是作用在方法上的,其核心思想是这样的:当我们在调用一个缓存方法时会把该方法参数和返回结果作为一个键值对存放在缓存中,等到下次利用同样的
- 当druid遇上oracle blob(clob)
jackyrong
oracle
http://blog.csdn.net/renfufei/article/details/44887371
众所周知,Oracle有很多坑, 所以才有了去IOE。
在使用Druid做数据库连接池后,其实偶尔也会碰到小坑,这就是使用开源项目所必须去填平的。【如果使用不开源的产品,那就不是坑,而是陷阱了,你都不知道怎么去填坑】
用Druid连接池,通过JDBC往Oracle数据库的
- easyui datagrid pagination获得分页页码、总页数等信息
ldzyz007
var grid = $('#datagrid');
var options = grid.datagrid('getPager').data("pagination").options;
var curr = options.pageNumber;
var total = options.total;
var max =
- 浅析awk里的数组
nigelzeng
二维数组array数组awk
awk绝对是文本处理中的神器,它本身也是一门编程语言,还有许多功能本人没有使用到。这篇文章就单单针对awk里的数组来进行讨论,如何利用数组来帮助完成文本分析。
有这么一组数据:
abcd,91#31#2012-12-31 11:24:00
case_a,136#19#2012-12-31 11:24:00
case_a,136#23#2012-12-31 1
- 搭建 CentOS 6 服务器(6) - TigerVNC
rensanning
centos
安装GNOME桌面环境
# yum groupinstall "X Window System" "Desktop"
安装TigerVNC
# yum -y install tigervnc-server tigervnc
启动VNC服务
# /etc/init.d/vncserver restart
# vncser
- Spring 数据库连接整理
tomcat_oracle
springbeanjdbc
1、数据库连接jdbc.properties配置详解 jdbc.url=jdbc:hsqldb:hsql://localhost/xdb jdbc.username=sa jdbc.password= jdbc.driver=不同的数据库厂商驱动,此处不一一列举 接下来,详细配置代码如下:
Spring连接池  
- Dom4J解析使用xpath java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
xp9802
用Dom4J解析xml,以前没注意,今天使用dom4j包解析xml时在xpath使用处报错
异常栈:java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
导入包 jaxen-1.1-beta-6.jar 解决;
&nb