遗传算法核心理解,python代码

遗传算法的核心,就在于,把待求的变量转化成二进制串,二进制串就像dna,可以对它的其中某几位进行交换,变异等操作,然后再转换回十进制,带入目标函数,计算适应度,保留适应度高变量进行繁殖。最关键的地方就是十进制数和二进制之间的相互编码与解码。

举个例子,如果我们有一个待求的变量x,取值范围是[1,3]的float型,我们可以把它编码成一个10位的二进制串:

首先把[1,3]的区间映射到[0,1]的区间,{x}'=0.5x-0.5

再把{x}'转成二进制串:10位二进制串可以表示的最大十进制数是2^{10}-1,将{x}'2^{10}-1{x}''={x}'*(2^{10}-1),再四舍五入取整,就得到了0到1023之间的整数,假如x''=65,65转化成十位二进制串就是 0 0 0 1 0 0 0 0 0 1,对这个二进制串就可以很容易的进行交换和变异操作了。反之,逆过程就是dna到十进制变量的解码。

用几位二进制数来表述,由计算精度决定。比如说,x的取值范围在0.01到1.81(包括两端),计算精度要求0.001,那么(1.81-0.01)/0.001 +1 =1801。2的10次方 < 1801, 2的11次方 > 1801,所以取11位二进制字符串来编码未知量。

如果有2个未知数,dna就是20位二进制串,前十位是第一个变量,后十位是第二个变量,以此类推。也可以奇数位是第一个变量,偶数位是第二个变量,可以自己定义编码解码方式。

完整python代码

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D

DNA_SIZE = 24
POP_SIZE = 80
CROSSOVER_RATE = 0.6
MUTATION_RATE = 0.01
N_GENERATIONS = 100
X_BOUND = [-2.048, 2.048]
Y_BOUND = [-2.048, 2.048]


def F(x, y):
    return 100.0 * (y - x ** 2.0) ** 2.0 + (1 - x) ** 2.0  # 以香蕉函数为例


def plot_3d(ax):
    X = np.linspace(*X_BOUND, 100)
    Y = np.linspace(*Y_BOUND, 100)
    X, Y = np.meshgrid(X, Y)
    Z = F(X, Y)
    ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm)
    ax.set_xlabel('x')
    ax.set_ylabel('y')
    ax.set_zlabel('z')
    plt.pause(3)
    plt.show()


def get_fitness(pop):
    x, y = translateDNA(pop)
    pred = F(x, y)
    return pred
    # return pred - np.min(pred)+1e-3  # 求最大值时的适应度
    # return np.max(pred) - pred + 1e-3  # 求最小值时的适应度,通过这一步fitness的范围为[0, np.max(pred)-np.min(pred)]


def translateDNA(pop):  # pop表示种群矩阵,一行表示一个二进制编码表示的DNA,矩阵的行数为种群数目
    x_pop = pop[:, 0:DNA_SIZE]  # 前DNA_SIZE位表示X
    y_pop = pop[:, DNA_SIZE:]  # 后DNA_SIZE位表示Y

    x = x_pop.dot(2 ** np.arange(DNA_SIZE)[::-1]) / float(2 ** DNA_SIZE - 1) * (X_BOUND[1] - X_BOUND[0]) + X_BOUND[0]
    y = y_pop.dot(2 ** np.arange(DNA_SIZE)[::-1]) / float(2 ** DNA_SIZE - 1) * (Y_BOUND[1] - Y_BOUND[0]) + Y_BOUND[0]
    return x, y


def crossover_and_mutation(pop, CROSSOVER_RATE=0.8):
    new_pop = []
    for father in pop:  # 遍历种群中的每一个个体,将该个体作为父亲
        child = father  # 孩子先得到父亲的全部基因(这里我把一串二进制串的那些0,1称为基因)
        if np.random.rand() < CROSSOVER_RATE:  # 产生子代时不是必然发生交叉,而是以一定的概率发生交叉
            mother = pop[np.random.randint(POP_SIZE)]  # 再种群中选择另一个个体,并将该个体作为母亲
            cross_points = np.random.randint(low=0, high=DNA_SIZE * 2)  # 随机产生交叉的点
            child[cross_points:] = mother[cross_points:]  # 孩子得到位于交叉点后的母亲的基因
        mutation(child)  # 每个后代有一定的机率发生变异
        new_pop.append(child)

    return new_pop


def mutation(child, MUTATION_RATE=0.003):
    if np.random.rand() < MUTATION_RATE:  # 以MUTATION_RATE的概率进行变异
        mutate_point = np.random.randint(0, DNA_SIZE*2)  # 随机产生一个实数,代表要变异基因的位置
        child[mutate_point] = child[mutate_point] ^ 1  # 将变异点的二进制为反转


def select(pop, fitness):  # nature selection wrt pop's fitness
    idx = np.random.choice(np.arange(POP_SIZE), size=POP_SIZE, replace=True,
                           p=(fitness) / (fitness.sum()))
    return pop[idx]


def print_info(pop):
    fitness = get_fitness(pop)
    max_fitness_index = np.argmax(fitness)
    print("max_fitness:", fitness[max_fitness_index])
    x, y = translateDNA(pop)
    print("最优的基因型:", pop[max_fitness_index])
    print("(x, y):", (x[max_fitness_index], y[max_fitness_index]))
    print(F(x[max_fitness_index], y[max_fitness_index]))


if __name__ == "__main__":
    fig = plt.figure()
    ax = Axes3D(fig)
    plt.ion()  # 将画图模式改为交互模式,程序遇到plt.show不会暂停,而是继续执行
    plot_3d(ax)

    pop = np.random.randint(2, size=(POP_SIZE, DNA_SIZE * 2))  # matrix (POP_SIZE, DNA_SIZE)
    for _ in range(N_GENERATIONS):  # 迭代N代
        x, y = translateDNA(pop)
        if 'sca' in locals():
            sca.remove()
        sca = ax.scatter(x, y, F(x, y), c='black', marker='o')
        plt.show()
        plt.pause(0.1)
        pop = np.array(crossover_and_mutation(pop, CROSSOVER_RATE))
        fitness = get_fitness(pop)
        pop = select(pop, fitness)  # 选择生成新的种群

    print_info(pop)
    plt.ioff()
    plot_3d(ax)

你可能感兴趣的:(算法,遗传算法)