TRT4-trt-integrate - 1 YOLOV5导出、编译、推理

 模型导出

 修改Image的Input动态维度

TRT4-trt-integrate - 1 YOLOV5导出、编译、推理_第1张图片

首先可以看到这个模型导出的时候Input有三个维度都是动态,而我们之前说过只需要一个batch维度是动态,所以要在export的export onnx 进行修改,将

torch.onnx.export(model, im, f, verbose=False, opset_version=opset,
                          training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
                          do_constant_folding=not train,
                          input_names=['images'],
                          output_names=['output'],
                          dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'},  # shape(1,3,640,640)
                                        'output': {0: 'batch', 1: 'anchors'}  # shape(1,25200,85)
                                        } if dynamic else None)

改为:

        torch.onnx.export(model, im, f, verbose=False, opset_version=opset,
                          training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
                          do_constant_folding=not train,
                          input_names=['images'],
                          output_names=['output'],
                          dynamic_axes={'images': {0: 'batch'},  # shape(1,3,640,640)
                                        'output': {0: 'batch'}  # shape(1,25200,85)
                                        } if dynamic else None)

TRT4-trt-integrate - 1 YOLOV5导出、编译、推理_第2张图片

修改完的已经变成了只有batch是动态维度 。

修改output

而且也可以看到,这里的output输出有四个tensor,其中三个都是fpn结构,80*80 , 40*40 , 20*20,这些我们在这里去掉,仅保留拼接后的结果。

将yolov5-6.0/models/yolo.py中的Class detect修改:

return x if self.training else (torch.cat(z, 1), x)

-->

return x if self.training else torch.cat(z, 1)

TRT4-trt-integrate - 1 YOLOV5导出、编译、推理_第3张图片

修改完毕的output仅保留拼接后的结果。

剪去多余节点:

之后发现这个onnx还是很丑啊

TRT4-trt-integrate - 1 YOLOV5导出、编译、推理_第4张图片

发现真正导致变丑的原因在于这些节点 比如Gather。所以下一步就是要干掉他。

这一步就是将:

      for i in range(self.nl):
            x[i] = self.m[i](x[i])  # conv
            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

改为:

            x[i] = self.m[i](x[i])  # conv
            bs, _, ny, nx = map(int,x[i].shape)  # x(bs,255,20,20) to x(bs,3,20,20,85)
            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

TRT4-trt-integrate - 1 YOLOV5导出、编译、推理_第5张图片 可以看到明显改善了不少。

调整reshape

 但是在reshape中可以看到中间维度是-1,而我们要的是batch是-1

TRT4-trt-integrate - 1 YOLOV5导出、编译、推理_第6张图片

 TRT4-trt-integrate - 1 YOLOV5导出、编译、推理_第7张图片

 而bs是-1 , y.view还有个-1,这肯定是不行的,那么我们就要手动把这个计算出来,首先y的shape和x的shape一样,x的shape是bs*self.na*self.no*ny*nx,那么这里就是y.view(bs , self.na*nx*ny,self,no)

之后保存再次导出,可以看到已经变成batch的-1了

TRT4-trt-integrate - 1 YOLOV5导出、编译、推理_第8张图片

修改多余节点:

 但是发现还有比如expand这种节点,推断可能是由于数据跟踪引起的

    def _make_grid(self, nx=20, ny=20, i=0):
        d = self.anchors[i].device
        yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
        grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
        anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
            .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()

所以在这里就没必要每个都保存起来,直接给一个常量值就可以。

anchor_grid = (self.anchors[i].clone() * self.stride[i]).view(1,-1,1,1,2)

然后将所有用到self.anchor_grid的部分都替换为anchor_grid。

这样看起来就变成很平整的样子了

TRT4-trt-integrate - 1 YOLOV5导出、编译、推理_第9张图片

 TRT4-trt-integrate - 1 YOLOV5导出、编译、推理_第10张图片

刚刚的那一大堆就变成了1*3*1*1*2这样子的常量值,这个kind是Initializer,就是常量的这个意思。

CPP推理过程:

TRT:

 YOLO:

 可以看到置信度稍微有一些区别。

输入input作warpaffine:

因为我们的输入是一个确认了的输入:是640*640。所以要对图像做一个类似warpaffine。就是等比缩放剧中填充

TRT4-trt-integrate - 1 YOLOV5导出、编译、推理_第11张图片

 


    ///
    // letter box
    auto image = cv::imread("car.jpg");
    // 通过双线性插值对图像进行resize
    float scale_x = input_width / (float)image.cols;
    float scale_y = input_height / (float)image.rows;
    float scale = std::min(scale_x, scale_y);
    float i2d[6], d2i[6];
    // resize图像,源图像和目标图像几何中心的对齐
    i2d[0] = scale;  i2d[1] = 0;  i2d[2] = (-scale * image.cols + input_width + scale  - 1) * 0.5;
    i2d[3] = 0;  i2d[4] = scale;  i2d[5] = (-scale * image.rows + input_height + scale - 1) * 0.5;

    cv::Mat m2x3_i2d(2, 3, CV_32F, i2d);  // image to dst(network), 2x3 matrix
    cv::Mat m2x3_d2i(2, 3, CV_32F, d2i);  // dst to image, 2x3 matrix
    cv::invertAffineTransform(m2x3_i2d, m2x3_d2i);  // 计算一个反仿射变换
//为什么要计算逆矩阵:因为正矩阵是图像变成warpaffine的过程,逆变换是把框变回到图像尺度的过程
    cv::Mat input_image(input_height, input_width, CV_8UC3);
    cv::warpAffine(image, input_image, m2x3_i2d, input_image.size(), cv::INTER_LINEAR, cv::BORDER_CONSTANT, cv::Scalar::all(114));  // 对图像做平移缩放旋转变换,可逆,填充全是常量值,114
    cv::imwrite("input-image.jpg", input_image);
//存储一下warpaffine效果
    int image_area = input_image.cols * input_image.rows;
    unsigned char* pimage = input_image.data;
    float* phost_b = input_data_host + image_area * 0;
    float* phost_g = input_data_host + image_area * 1;
    float* phost_r = input_data_host + image_area * 2;
    for(int i = 0; i < image_area; ++i, pimage += 3){
        // 注意这里的顺序rgb调换了
        *phost_r++ = pimage[0] / 255.0f;
        *phost_g++ = pimage[1] / 255.0f;
        *phost_b++ = pimage[2] / 255.0f;
    }
    ///
    checkRuntime(cudaMemcpyAsync(input_data_device, input_data_host, input_numel * sizeof(float), cudaMemcpyHostToDevice, stream));

存储一下warpaffine效果

TRT4-trt-integrate - 1 YOLOV5导出、编译、推理_第12张图片

之后就是作推理:


    // 3x3输入,对应3x3输出
    auto output_dims = engine->getBindingDimensions(1);
    int output_numbox = output_dims.d[1];
    int output_numprob = output_dims.d[2];
    int num_classes = output_numprob - 5;//类别数
    int output_numel = input_batch * output_numbox * output_numprob;
    float* output_data_host = nullptr;
    float* output_data_device = nullptr;
    checkRuntime(cudaMallocHost(&output_data_host, sizeof(float) * output_numel));
    checkRuntime(cudaMalloc(&output_data_device, sizeof(float) * output_numel));

    // 明确当前推理时,使用的数据输入大小
    auto input_dims = engine->getBindingDimensions(0);
    input_dims.d[0] = input_batch;

    execution_context->setBindingDimensions(0, input_dims);
    float* bindings[] = {input_data_device, output_data_device};
    bool success      = execution_context->enqueueV2((void**)bindings, stream, nullptr);
    checkRuntime(cudaMemcpyAsync(output_data_host, output_data_device, sizeof(float) * output_numel, cudaMemcpyDeviceToHost, stream));
    checkRuntime(cudaStreamSynchronize(stream));

这个结果就是我们之前YOLOV5的predict(https://blog.csdn.net/zhuangtu1999/article/details/131499750?spm=1001.2014.3001.5501)

但在这里根之前不太一样了:

vector> bboxes;
    float confidence_threshold = 0.25;
    float nms_threshold = 0.5;
    for(int i = 0; i < output_numbox; ++i){
        float* ptr = output_data_host + i * output_numprob;
        float objness = ptr[4];
        if(objness < confidence_threshold)
            continue;

        float* pclass = ptr + 5;
        int label     = std::max_element(pclass, pclass + num_classes) - pclass;
        float prob    = pclass[label];
        float confidence = prob * objness;
        if(confidence < confidence_threshold)
            continue;

        // 中心点、宽、高
        float cx     = ptr[0];
        float cy     = ptr[1];
        float width  = ptr[2];
        float height = ptr[3];

        // 预测框
        float left   = cx - width * 0.5;
        float top    = cy - height * 0.5;
        float right  = cx + width * 0.5;
        float bottom = cy + height * 0.5;

        // 对应图上的位置
        float image_base_left   = d2i[0] * left   + d2i[2];
        float image_base_right  = d2i[0] * right  + d2i[2];
        float image_base_top    = d2i[0] * top    + d2i[5];
        float image_base_bottom = d2i[0] * bottom + d2i[5];
        bboxes.push_back({image_base_left, image_base_top, image_base_right, image_base_bottom, (float)label, confidence});
    }
    printf("decoded bboxes.size = %d\n", bboxes.size());

这里的预测框,left,top等等对应的是warpaffine之后的图片,但我们要做的是把他在原来的图片上加入回来,所以还要做一个反变换的过程。

这里也是我们值前提到过,咱们只有缩放和平移的时候,有效的参数只有三个:scale , dx , dy,这里对应的就是d2i[0] , d2i[2] , d2i[5]。

在之后就是nms:


    // nms非极大抑制
    std::sort(bboxes.begin(), bboxes.end(), [](vector& a, vector& b){return a[5] > b[5];});
    std::vector remove_flags(bboxes.size());
    std::vector> box_result;
    box_result.reserve(bboxes.size());

    auto iou = [](const vector& a, const vector& b){
        float cross_left   = std::max(a[0], b[0]);
        float cross_top    = std::max(a[1], b[1]);
        float cross_right  = std::min(a[2], b[2]);
        float cross_bottom = std::min(a[3], b[3]);

        float cross_area = std::max(0.0f, cross_right - cross_left) * std::max(0.0f, cross_bottom - cross_top);
        float union_area = std::max(0.0f, a[2] - a[0]) * std::max(0.0f, a[3] - a[1]) 
                         + std::max(0.0f, b[2] - b[0]) * std::max(0.0f, b[3] - b[1]) - cross_area;
        if(cross_area == 0 || union_area == 0) return 0.0f;
        return cross_area / union_area;
    };

    for(int i = 0; i < bboxes.size(); ++i){
        if(remove_flags[i]) continue;

        auto& ibox = bboxes[i];
        box_result.emplace_back(ibox);
        for(int j = i + 1; j < bboxes.size(); ++j){
            if(remove_flags[j]) continue;

            auto& jbox = bboxes[j];
            if(ibox[4] == jbox[4]){
                // class matched
                if(iou(ibox, jbox) >= nms_threshold)
                    remove_flags[j] = true;
            }
        }
    }
    printf("box_result.size = %d\n", box_result.size());

通过cv::rectangle画框:

    for(int i = 0; i < box_result.size(); ++i){
        auto& ibox = box_result[i];
        float left = ibox[0];
        float top = ibox[1];
        float right = ibox[2];
        float bottom = ibox[3];
        int class_label = ibox[4];
        float confidence = ibox[5];
        cv::Scalar color;
        tie(color[0], color[1], color[2]) = random_color(class_label);//通过标签随机选择颜色
        cv::rectangle(image, cv::Point(left, top), cv::Point(right, bottom), color, 3);

        auto name      = cocolabels[class_label];
        auto caption   = cv::format("%s %.2f", name, confidence);
        int text_width = cv::getTextSize(caption, 0, 1, 2, nullptr).width + 10;
        cv::rectangle(image, cv::Point(left-3, top-33), cv::Point(left + text_width, top), color, -1);
        cv::putText(image, caption, cv::Point(left, top-5), 0, 1, cv::Scalar::all(0), 2, 16);
    }
    cv::imwrite("image-draw.jpg", image);

    checkRuntime(cudaStreamDestroy(stream));
    checkRuntime(cudaFreeHost(input_data_host));
    checkRuntime(cudaFreeHost(output_data_host));
    checkRuntime(cudaFree(input_data_device));
    checkRuntime(cudaFree(output_data_device));
}

总结:

在这次过程中,warpaffine(预处理)和后处理过程都可以使用我们之前的核函数去处理,这一部分打包到GPU上的话性能会变得更高。

你可能感兴趣的:(TRT,c++)