- 先进制造aps专题二十七 西门子opcenter aps架构分析
lijianhua_9712
apsaps
欧美的商业aps,主要就是sapapo,西门子opcenteraps,达索quintiq从技术的层面,西门子aps是不如sapapo的,但是西门子aps是西门子数字化工厂产品的核心,有很多特色,所以分析西门子aps主要分计划器和排产器两个部分计划器制定中长期计划,也就是粗排产,实现比较简单,这里就不分析了排产器主要架构是1数据访问模块,对各种数据库的访问,业务数据就存放在数据库里数据集成,直接访问
- 先进制造aps专题二十八 生产排程仿真引擎和工厂生产仿真引擎的设计
lijianhua_9712
aps生产排产仿真引擎工厂生产仿真引擎
一排产仿真引擎的设计主要分为仿真模型,仿真模型逻辑和仿真框架这三个部分1仿真模型和算法排产不一样,在算法排产里,机器对应的是数据库记录,排产逻辑是写在整体的算法里的,而仿真排产,机器对应的是一个仿真模型,每个仿真模型都有自己的执行逻辑,成千上万的仿真模型随着时间的移动,执行自己的逻辑在生产排产仿真里,常见的仿真模型有机器(机器/制造单元/工作站/产线),生产任务,订单,操作人员,缓冲区等2仿真模型
- 【腾讯TMQ】【浅谈Chromium中的设计模式(一)】——Chromium中模块分层和进程模型
腾讯移动品质中心TMQ
测试分析
背景“EP”(中文:工程生产力)是目前项目中提升研发能力的一个很重要的衡量指标。笔者重点学习了Chromium产品是如何从代码和设计层面来保证快速高效的工程生产力。本文就是基于此背影下关于Chromium的设计模式的一部分总结。Chromium中模块分层和进程模型任何好的架构就要做到模块之间高内聚,低耦合,并符合SOLID(单一功能、开闭原则、里氏替换、接口隔离以及依赖反转)的设计原则。Chrom
- Chromium Design Document学习及翻译之Multi-process Architecture
lail3344
browserchromium
ChromiumDesignDocument学习及翻译之Multi-processArchitecturehttp://www.chromium.org/developers/design-documents/multi-process-architectureMulti-processArchitectureThisdocumentdescribesChromium'shigh-levelarc
- 编译原理第五章——自下而上分析——LR(1)超详细分析!
爱吃芝麻汤圆
#编译原理汇编
本文中内容整理西安交通大学软件学院吴晓军老师的ppt中,仅供学习使用,请勿转载或他用参考教材:《程序设计语言编译原理》(第3版)陈火旺等国防工业出版社编译原理第五章——自下而上分析目录一、复习:语法分析的两种方式二、自下而上分析概述1.核心思想:移进-规约2.规范规约3.规范规约的两个问题三、算符优先分析1.概念辨析-算符文法、算符优先文法2.概念辨析-算符优先分析法、直观算符优先分析法3.概念辨
- Android音视频开发实战系列教程
Stark T
android音视频
Android音视频开发实战系列教程指南在这篇文章中,我们将通过一个逐步流程,帮助刚入行的小白学习如何进行Android音视频开发。本教程会展示实施的步骤、所需的代码示例及其注释,最后还包括旅行图和类图来进一步帮助理解。开发流程我们可以将音视频开发的整个流程分为以下几个步骤。请看下表:步骤描述1.环境搭建安装所需的软件和开发工具2.项目创建创建Android项目并导入其他依赖库3.引入音视频SDK
- 一、C#上位机语法篇学习笔记
飞翔的老宫本
C#上位机c#visualstudiowindows笔记学习
0、基础中的基础Write和WriteLine方法对比#region1Write和WriteLine方法对比staticvoidTest1()//方法{stringemal1="915992026@qq.com";stringuserName=emal1.Substring(0,7);Console.WriteLine(userName);//输出后换行stringuserName1=emal1.
- 使用OpenAI的API构建聊天机器人
dgay_hua
机器人python
技术背景介绍聊天机器人是近年来热门的AI应用之一,无论是客服系统、智能助手还是社交娱乐,都可以看到其身影。构建一个高效的聊天机器人,离不开强大的自然语言处理模型。OpenAI提供的API为开发者简化了这一过程,本文将介绍如何使用OpenAI的API服务构建一个基本的聊天机器人。核心原理解析聊天机器人主要依赖于生成式预训练模型(GPT),它通过大量文本数据训练,学习语言模式和上下文关联,从而能够生成
- 【个人学习日志-前端】浏览器窗口大小改变后,超出视窗部分的导航栏div标签背景色丢失问题
雲海夢
学习csshtmlvscode前端
项目场景:复刻小米商城前端html。问题描述浏览器窗口宽度改变后,导航栏div标签超出视图的部分背景色丢失。问题如图:原因分析:导航栏的宽度是基于其子元素的宽度计算的,当窗口宽度较小时,子元素可能会换行或超出视窗,导致背景色无法覆盖整个导航栏。如果导航栏的布局没有正确处理响应式设计,当窗口宽度较小时,布局可能会塌陷,导致背景色丢失。min-width属性用于设置元素的最小宽度,确保元素在窗口宽度较
- 机器学习·逻辑回归
AAA顶置摸鱼
python深度学习机器学习逻辑回归人工智能
前言逻辑回归虽然名称中有“回归”,但实际上用于分类问题。基于线性回归的模型,通过使用逻辑函数(如Sigmoid函数)将线性组合的结果映射到0到1之间的概率值,用于表示属于某个类别的可能性。一、逻辑回归vs线性回归特性逻辑回归线性回归任务类型分类(二分类为主)回归(预测连续值)输出范围(0,1)(概率值)(-∞,+∞)核心函数Sigmoid函数线性函数损失函数对数损失函数(交叉熵)均方误差(MSE)
- Meta AI 最近推出了一款全新的机器学习框架ParetoQ,专门用于大型语言模型的4-bit 以下量化
新加坡内哥谈技术
人工智能语言模型自然语言处理
每周跟踪AI热点新闻动向和震撼发展想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行!订阅:https://rengongzhineng.io/MetaAI最近推出了一款全新的机器学习框架——ParetoQ,专门用于大型语言模型的4
- 论文笔记《基于深度学习模型的药物-靶标结合亲和力预测》
I_dyllic
深度学习论文阅读深度学习人工智能
基于深度学习模型的药物-靶标结合亲和力预测这是一篇二区的文章,算是一个综述,记录一下在阅读过程中遇到的问题。文章目录基于深度学习模型的药物-靶标结合亲和力预测前言一、蛋白质接触图谱二、为什么蛋白质图谱的准确性对DTA模型预测结果没有影响1.对这段话的解释2.关于Alphafold3三、随机配体与随机配体节点属性(配体一般指药物)1.什么是随机配体与配体节点属性四、关于深度学习模型对特征的自动学习过
- python票务系统_python基础学习:模拟火车订票系统
一愫
python票务系统
2020-12-20str1=["车次","出发站-到达站","出发时间","到达时间","历时"]train_numbers=["T40","T298","Z158"]train_place=["长春-北京","哈尔滨-北京","青岛-北京"]train_outTime=["00:12","00:06","12:48"]train_arriveTime=["12:20","10:50","21:
- Andrej Karpathy:计算范式的变革者
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
《AndrejKarpathy:计算范式的变革者》概述本文旨在全面探讨AndrejKarpathy在计算范式变革中的角色和贡献。AndrejKarpathy是一位世界级的人工智能专家,程序员,软件架构师,CTO,同时也是计算机图灵奖获得者,计算机编程和人工智能领域大师。他以其深刻的技术见解,对深度学习和自然语言处理领域的贡献,以及对计算范式的革新性思考,成为了当今技术领域的引领者之一。本文分为六个
- 基于Python、使用`pandas`库和`Brightway2`库实现根据Excel表格某一列内容与数据库进行匹配
go5463158465
python算法pythonpandasexcel
以下是一个基于Python、使用pandas库和Brightway2库实现根据Excel表格某一列内容与数据库进行匹配,然后抓取匹配成功的数据并导出为新Excel表格的示例代码。这里假设你已经成功导入了数据库,并且了解数据库中数据的结构。安装必要的库首先确保你已经安装了pandas和Brightway2库。如果没有安装,可以使用以下命令进行安装:pipinstallpandasbrightway2
- 人生的转折点反而迷失了方向
苏木樨
笔记
就像我老婆说的,我是抽空结了一个婚。今天是上班的第三天,不知道是出于何种原因,自己反而陷入了深深的困境,没有了斗志,原因也找不出来,白天在公司没有很大量的产出,晚上回去是想学一学,或者看看书;也静不下心来,变得浮躁,眼高手低,看上去有很多路子,但实际上又感觉无路可走;静下心来坐在电脑面前安心学习的日子一去不复返。流逝的是时间,浪费的是我为数不多的生命。经典一问,我该何去何从?创业,我做什么呢?我该
- 一杯咖啡的时间学习大模型(LLM):LLaMA解读之旋转编码RoPE(含代码实现)
Bug_makerACE
llamapython人工智能nlppytorch深度学习transformer
文章目录一、LLaMA的核心改进全景二、旋转位置编码(RoPE)2.1改进动机2.2数学原理2.3源码实现一、LLaMA的核心改进全景Meta开源的LLaMA模型凭借其卓越的性能表现成为大模型发展的重要里程碑。相较于标准Transformer架构,LLaMA主要在以下几个方面进行了关键改进:位置编码升级:采用旋转位置编码(RotaryPositionEmbedding,RoPE)归一化革新:对每个
- 【LeetCode 刷题】单调栈(1)-下一更大元素
Bran_Liu
LeetCodeleetcode算法职场和发展python
此博客为《代码随想录》单调栈章节的学习笔记,主要内容为单调栈下一更大元素问题的相关题目解析。文章目录739.每日温度496.下一个更大元素I503.下一个更大元素II739.每日温度题目链接classSolution:defdailyTemperatures(self,temperatures:List[int])->List[int]:n=len(temperatures)res=[0]*nst
- DeepSeek底层揭秘——知识图谱与语料库的联邦学习架构
9命怪猫
知识图谱架构人工智能
目录1.知识图谱与语料库的联邦学习架构2.技术要素3.技术难点与挑战4.技术路径5.应用场景6.最新研究与技术进展7.未来趋势8.实际案例猫哥说1.知识图谱与语料库的联邦学习架构(1)定义“知识图谱与语料库的联邦学习架构”是一种结合知识图谱(KnowledgeGraph,KG)、语料库(Corpus)和联邦学习(FederatedLearning,FL)的分布式学习框架。其核心目标是通过联邦学习技
- linux学习第六十篇:Linux监控平台介绍,zabbix监控介绍,安装zabbix,忘记Admin密码如何做_adminstartor密码
2501_90339150
linux学习zabbix
Linux监控平台介绍常见开源监控软件:cacti、nagios、zabbix、smokeping、open-falcon等等cacti、smokeping偏向于基础监控,成图非常漂亮cacti、nagios、zabbix服务端监控中心,需要php环境支持,其中zabbix和cacti都需要mysql作为数据存储,nagios不用存储历史数据,注重服务或者监控项的状态,zabbix会获取服务或者监
- 人工智能之自然语言处理技术演进
香橙薄荷心
AI人工智能自然语言处理
自然语言处理技术演进自然语言处理(NaturalLanguageProcessing,NLP)是人工智能的重要分支,旨在使计算机能够理解、生成和处理人类语言。近年来,NLP技术经历了从规则驱动到数据驱动的革命性演进,尤其是在深度学习和大规模预训练模型的推动下,取得了显著突破。本文将深入探讨NLP技术的演进历程、核心模型及其应用,并通过具体案例和代码示例帮助读者理解其实际应用。1.NLP技术演进历程
- 网络安全(黑客)——自学2025
网安大师兄
web安全安全网络网络安全密码学
基于入门网络安全/黑客打造的:黑客&网络安全入门&进阶学习资源包前言什么是网络安全网络安全可以基于攻击和防御视角来分类,我们经常听到的“红队”、“渗透测试”等就是研究攻击技术,而“蓝队”、“安全运营”、“安全运维”则研究防御技术。如何成为一名黑客很多朋友在学习安全方面都会半路转行,因为不知如何去学,在这里,我将这个整份答案分为黑客(网络安全)入门必备、黑客(网络安全)职业指南、黑客(网络安全)学习
- 分发饼干(力扣455)
qy发大财
leetcode算法职场和发展
从这道题开始我们就进入贪心算法的学习了。这个算法没有固定的套路,甚至题目之间的联系也很少,基本上每一道题都要当新题来写。我们能做的只有见多识广,这样才有机会在考试中根据以往经验解决贪心的题目。贪心的本质上就是找到局部最优解,最终的答案就是全局最优解。这道题要求尽可能分到更多的小孩,那么所谓的贪心究竟贪在什么地方呢?我们可以先将胃口和饼干的数组进行从小到大的排序,让小胃口的小孩吃到尽可能小的饼干,只
- 利用gensim生成词袋模型(基于频次和基于TF-IDF)
weixin_50291342
文本表示自然语言处理python机器学习
前言参考文献:胡盼盼编著.自然语言处理从入门到实战[M].中国铁道出版社,2020.最近在学习文本表示的一种最简单方式——词袋模型,书中给出了使用gensim生成词袋模型的代码,原代码就来自于这本书,我加了一些注释,方便理解代码。一、引入库fromgensim.modelsimportTfidfModelfromgensim.corporaimportDictionaryimportjieba二、
- 2019 - Web开发技术指南和趋势
编程鸭
互联网JavaScript编程语言前端前端IT编程程序员
这是一个2019年你成为前端,后端或全栈开发者的进阶指南:你不需要学习所有的技术成为一个web开发者这个指南只是通过简单分类列出了技术选项我将从我的经验和参考中给出建议首选我们会介绍通用的知识,最后介绍2019年的Web的一些趋势1.基础前端开发者1.1HTML&CSSHTML&CSS最基础的知识:语义化的HTML元素基础的CSS语法Flexbox&GridCSS变量浏览器开发者工具1.2响应式布
- Python面试宝典:Python中与Django相关的面试笔试题(1000加面试笔试题助你轻松捕获大厂Offer)
脑洞笔记
python全栈面试宝典python面试django
Python面试宝典:1000加python面试题助你轻松捕获大厂Offer【第二部分:Python高级特性:第十六章:Web开发:第二节:Django】第十六章:Web开发第二节:DjangoMTV架构(模型-模板-视图)特性快速开始数据库和模型URL路由和视图模板Django面试题面试题1面试题2面试题3面试题4面试题5面试题6面试题7面试题8面试题9面试题10更多面试题请查阅:Python面
- 书籍-《机器学习数学基础》
机器学习深度学习数学
书籍:MathematicsforMachineLearning作者:MarcPeterDeisenroth,A.AldoFaisal,ChengSoonOng出版:CambridgeUniversityPress编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《机器学习数学基础》01书籍介绍理解机器学习所需的基本数学工具包括线性代数、解析几何、矩阵分解、向量微积分、最优化、概率论和统计学。这
- R 语言 必备 十大资源
后端
引言R是进行统计计算和数据分析的热门编程语言之一,广泛应用于数据科学家、研究者和统计学家之间,用于处理大数据、执行复杂分析和结果可视化。如果你是R的新手或希望提升你的R技能,这里有一些核心资源可以助你一臂之力,无论是从基础学起还是提高现有水平,包括官方站点、知名学府和互动式学习平台。1.R项目官网(r-project.org)R项目的官方网站是开启R学习之旅的首选,它提供免费的R软件、文档、教程和
- 如何利用Spring的@Value注解实现配置信息的动态注入与管理?
码农技术栈
springspringcloudspringbootjava微服务
@Value注解在Spring中的作用,就像是一个“传话员”,它负责把配置文件中的值或者其他来源的值传递给Java对象中的属性。想象一下,你有一个装满各种设置的小盒子(配置文件),里面记录了各种信息,比如数据库的连接信息、应用的端口号等。现在,你有一个Java对象,它需要一个属性值,比如数据库的连接字符串。这时候,@Value注解就像是一个“传话员”,它跑到小盒子(配置文件)那里,找到对应的值,然
- 零基础入门机器学习 -- 第三章第一个机器学习模型——线性回归
山海青风
#机器学习人工智能机器学习回归线性回归python
3.1线性回归的概念在现实生活中,许多事情都遵循某种线性关系,比如:房价vs面积:房子的面积越大,价格通常越高。工资vs工作经验:工作经验越多,薪资往往更高。汽车油耗vs车速:在一定范围内,车速越快,油耗可能越高。线性回归(LinearRegression)是机器学习中最基础的算法之一,它用于研究两个变量之间的线性关系,即一个变量(自变量)如何影响另一个变量(因变量)。3.2线性回归的数学直觉线性
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s