- [实践应用] 深度学习之优化器
YuanDaima2048
深度学习工具使用pytorch深度学习人工智能机器学习python优化器
文章总览:YuanDaiMa2048博客文章总览深度学习之优化器1.随机梯度下降(SGD)2.动量优化(Momentum)3.自适应梯度(Adagrad)4.自适应矩估计(Adam)5.RMSprop总结其他介绍在深度学习中,优化器用于更新模型的参数,以最小化损失函数。常见的优化函数有很多种,下面是几种主流的优化器及其特点、原理和PyTorch实现:1.随机梯度下降(SGD)原理:随机梯度下降通过
- VLSI电路单元的自动布局:全局布局基础介绍
Jaaiko
数学建模算法开源图论matlab
2024年华数杯全国大学生数学建模竞赛B题为:VLSI电路单元的自动布局。本题主要关注的是全局布局问题。学术界针对全局布局的评估模型和优化方法的研究历史悠久。本文借题顺势介绍全局布局的一些重点基础内容和相关工具/资料,以期为对EDA算法设计领域感兴趣、对数学建模感兴趣的人降低研究门槛。VLSI是超大规模集成电路的简称。完成一个VLSI设计的流程十分复杂,包含多种数据格式的转化,其中将逻辑网表转变为
- npm install 太慢?解决方法大揭秘
小柒笔记
npm前端node.js
本文将详细介绍如何解决npminstall命令执行速度慢的问题。文章将涵盖npminstall命令执行慢的原因、优化方法以及实际应用案例。通过本文的学习,读者可以掌握提高npminstall命令执行速度的基本技巧,并在实际项目中得心应手。引言npminstall是Node.js项目开发中的常用命令,用于安装项目依赖。然而,在某些情况下,npminstall命令的执行速度可能会变得非常慢,这可能影响
- 363. 矩形区域不超过 K 的最大数值和(C语言实现)
Buaaer(>ω<)
算法学习-Leetcode动态规划算法二分查找
文章目录363.矩形区域不超过K的最大数值和题干声明方法1-暴力枚举+简单dp方法2-暴力枚举+二维数组前缀和方法3-固定边界搜索方法4-固定边界搜索+dp优化方法5-固定边界搜索+前缀和+二分查找363.矩形区域不超过K的最大数值和本题涉及内容:一/二维前缀和问题、降维问题、暴力枚举问题、dp问题、二分查找问题题干给你一个m∗nm*nm∗n的矩阵matrixmatrixmatrix和一个整数kk
- K-means 算法的介绍与应用
小魏冬琅
matlab算法kmeans机器学习
目录引言K-means算法的基本原理表格总结:K-means算法的主要步骤K-means算法的MATLAB实现优化方法与改进K-means算法的应用领域表格总结:K-means算法的主要应用领域结论引言K-means算法是一种经典的基于距离的聚类算法,在数据挖掘、模式识别、图像处理等多个领域中得到了广泛应用。其核心思想是将相似的数据对象聚类到同一个簇中,而使得簇内对象的相似度最大、簇间的相似度最小
- 打造高效业务架构:价值流在企业转型中的应用指南
The Open Group
大数据数字化转型企业架构师微服务云原生架构
从流程到价值流的业务架构转型随着企业面对数字化转型带来的激烈市场竞争,优化业务架构成为每个企业管理者必须面对的核心挑战。传统的业务流程优化方法往往难以应对复杂的客户需求和日益增加的业务复杂性。《价值流指南》由TheOpenGroup发布的企业数字化转型专业参考材料,系统化介绍了如何定义、分解和映射价值流,以及其在商业架构中的应用,《价值流指南》为企业提供了一种全新的业务优化视角,将焦点从内部流程效
- [01] 动态规划解题套路框架
_魔佃_
本文解决几个问题:动态规划是什么?解决动态规划问题有什么技巧?如何学习动态规划?刷题刷多了就会发现,算法技巧就那几个套路。所以本文放在第一章,来扒一扒动态规划的裤子,形成一套解决这类问题的思维框架,希望能够成为解决动态规划问题的一部指导方针。本文就来讲解该算法的基本套路框架,下面上干货。labuladong的算法小抄首先,动态规划问题的一般形式就是求最值。动态规划其实是运筹学的一种最优化方法,只不
- Matlab实现BP-NSGA-II多目标预测优化方法
含老司开挖掘机
本文还有配套的精品资源,点击获取简介:本文涉及将遗传算法优化的BP神经网络与NSGA-II相结合,应用于多目标预测问题的解决。主要内容包括BP神经网络的学习原理、适应度函数的设计与应用、NSGA-II在多目标优化中的作用、多目标预测的策略以及Matlab工具在算法实现中的使用。本文旨在通过这些技术,帮助读者构建出能在多个相互冲突的目标间取得平衡的优化解决方案,并提供完整的Matlab代码实现,以供
- Adam优化器:深度学习中的自适应方法
2401_85743969
深度学习人工智能
引言在深度学习领域,优化算法是训练神经网络的核心组件之一。Adam(AdaptiveMomentEstimation)优化器因其自适应学习率调整能力而受到广泛关注。本文将详细介绍Adam优化器的工作原理、实现机制以及与其他优化器相比的优势。深度学习优化器概述优化器在深度学习中负责调整模型的参数,以最小化损失函数。常见的优化器包括SGD(随机梯度下降)、RMSprop、AdaGrad、AdaDelt
- WebView交互架构项目实战(三),史上超级详细
m0_66264881
程序员架构移动开发android
returnsplashTargetPath+“/”;}***1:常用JS本地化及延迟加载*******资源等文件(不需要更新)本地存储,在需要的时候直接从本地获取。哪些资源需要我们去存储在本地呢,当然是一些不会被更新的资源,例如图片文件,js文件,css文件,比预加载更粗暴的优化方法是直接将常用的JS脚本本地化,直接打包放入apk中。比如H5页面获取用户信息,设置标题等通用方法,就可以直接写入一
- 基于深度学习的结构优化与生成
SEU-WYL
深度学习dnn深度学习人工智能
基于深度学习的结构优化与生成技术应用于多种领域,例如建筑设计、机械工程、材料科学等。该技术通过使用深度学习模型分析和优化结构形状、材料分布、拓扑结构等因素,旨在提高结构性能、减少材料浪费、降低成本、并加快设计流程。1.结构优化与生成的核心概念结构优化:涉及通过调整结构设计参数(如形状、材料、厚度等)来改善其特定性能指标,如强度、刚度、重量、成本或安全性。传统的优化方法依赖于数值仿真和数学优化算法,
- 深度学习与遗传算法的碰撞——利用遗传算法优化深度学习网络结构(详解与实现)
2401_84003733
程序员深度学习人工智能
self.model.add(layers.Dense(10,activation=‘relu’))self.model.build(input_shape=(4,28*28))self.model.summary()self.model.compile(optimizer=optimizers.Adam(lr=0.01),loss=losses.CategoricalCrossentropy(f
- 如何在Java中实现高效的分布式梯度下降算法
省赚客app开发者
java分布式算法
如何在Java中实现高效的分布式梯度下降算法大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!在本文中,我们将探讨如何在Java中实现高效的分布式梯度下降算法。分布式梯度下降(DistributedGradientDescent)是一种常用于训练大规模机器学习模型的优化方法,特别是在处理大规模数据集时非常有效。本文将介绍如何设计和实现这一算法,以提高训练效率。分布式梯度
- 最优化方法Python计算:一元函数搜索算法——二分法
戌崂石
最优化方法最优化方法python
设一元目标函数f(x)f(x)f(x)在区间[a0,b0]⊆R[a_0,b_0]\subseteq\text{R}[a0,b0]⊆R(其长度记为λ\lambdaλ)上为单峰函数,且在(a0,b0)(a_0,b_0)(a0,b0)内连续可导,即其导函数f′(x)f'(x)f′(x)在(a0,b0)(a_0,b_0)(a0,b0)内连续。在此增强的条件下,可以加速迭代计算压缩区间的过程。仍然设置计算精
- Python(TensorFlow)和Java及C++受激发射损耗导图
亚图跨际
Python交叉知识算法去噪预测算法聚焦荧光团伪影消除算法囊泡动力学自动化多尺度统计物距
要点神经网络监督去噪预测算法聚焦荧光团和检测模拟平台伪影消除算法性能优化方法自动化多尺度囊泡动力学成像生物研究多维分析统计物距粒子概率算法Python和MATLAB图像降噪算法消除噪声的一种方法是将原始图像与表示低通滤波器或平滑操作的掩模进行卷积。例如,高斯掩模包含由高斯函数确定的元素。这种卷积使每个像素的值与其相邻像素的值更加协调。一般来说,平滑滤波器将每个像素设置为其自身及其附近相邻像素的平均
- 第十七章 总结与延申:从无心讹传到洞若观火
张小邪倒斗中
《收获不止SQL优化》笔记oracle数据库sql
参考《收获,不止SQL优化》作者:梁敬彬/梁敬弘质疑探索比学习更重要!!!一、网上的优化方法,有些是错的,有些已过时,要自己动手验证过。所以构造环境,出验证脚本,就要仔细思考如何才能得到尽量准确的试验结果。(比如保证数据量,不统计首次执行的硬解析时间、多次执行取平均值对比效率等等)二、只要你觉得不流畅,用户体验不好,都是有问题的。有些是提供的方法本身就不是最佳的,有些高版本已经做过优化了,有些确实
- tomcat 配置java启动参数配置_tomcat常用配置详解和优化方法
徐聪瓜要努力
tomcat配置java启动参数配置
tomcat常用配置详解和优化方法参考:http://blog.csdn.net/zj52hm/article/details/51980194http://blog.csdn.net/wuliu_forever/article/details/52607177https://www.cnblogs.com/dengyungao/p/7542604.htmlhttps://www.cnblogs.
- 深度学习--机器学习相关(2)
在下小天n
深度学习深度学习机器学习人工智能
1.适应性矩估计适应性矩估计(AdaptiveMomentEstimation,Adam)是一种可以代替传统的梯度下降(SGD和MBGD)的优化算法。Adam算法结合了适应性梯度算法和均方根传播的优点。Momentum在学习机器学习时是很可能遇到的,是动量的意思。动量不是速度和学习率,应该说是类似于加速度。AdaGrad(适应性梯度算法)适应性梯度算法的特点在于:独立地调整每一个参数的学习率。在S
- Unity3D 屏幕空间阴影的简单优化详解
Clank的游戏栈
人工智能算法
在Unity3D中,阴影是提升场景真实感的重要元素之一。然而,传统的阴影映射技术(ShadowMapping)可能会因为计算量大而导致性能问题。屏幕空间阴影(ScreenSpaceShadows,SSS)技术提供了一种更高效的阴影生成方式,特别是在现代图形硬件上。本文将详细介绍屏幕空间阴影的基本原理、优化方法以及代码实现。对惹,这里有一个游戏开发交流小组,希望大家可以点击进来一起交流一下开发经验呀
- 【AI大模型应用开发】1.2 Prompt Engineering(提示词工程)- 站在巨人的肩膀上,超实用!常用提示词整理
AI-入门
prompt深度学习人工智能chatgptagi
通过上两篇文章我们学习和实践了Prompt的书写要素、原则与技巧,以及了解了一些进阶的优化方法。本来今天是想收集一些网上比较好的Prompt提示词,来与大家共同学习下别人的书写方式,吸取别人的经验,对Prompt有个更深入的理解。但是发现这有点不太好,直接copy别人的东西,附个链接有点枯燥,大家看起来也比较懵。并且网上专门收集Prompt的文档和网站也有很多,我就不在这里班门弄斧了。对于想看各类
- SQL调优——调优技巧
码说芯语
#性能优化#关系型数据库sql数据库
文章目录1、查看真实的基数(Rows)2、使用UNION代替OR3、分页语句优化思路3.1、单表分页优化思路3.2、多表关联分页优化思路4、使用分析函数优化自连接5、超大表与超小表关联优化方法6、超大表与超大表关联优化方法7、LIKE语句优化方法8、DBLINK优化9、对表进行ROWID切片10、SQL三段分拆法1、查看真实的基数(Rows)执行计划中的Rows是假的,是CBO根据统计信息和数学公
- 探索C++编程技巧:计算两个字符串的最长公共子串
清水白石008
C++C++题库面试试题c++代理模式开发语言
探索C++编程技巧:计算两个字符串的最长公共子串在C++面试中,考官通常会关注候选人的编程能力、问题解决能力以及对C++语言特性的理解。一个常见且经典的问题是计算两个字符串的最长公共子串(LongestCommonSubstring,LCS)。本文将详细介绍如何编写一个函数来解决这个问题,并深入探讨相关的编程技巧和优化方法。目录引言问题描述解决思路实现步骤基础实现动态规划优化代码示例复杂度分析总结
- 人工智能&机器学习&深度学习
AA杂货铺111
机器学习:一切通过优化方法挖掘数据中规律的学科。深度学习:一切运用了神经网络作为参数结构进行优化的机器学习算法。强化学习:不仅能利用现有数据,还可以通过对环境的探索获得新数据,并利用新数据循环往复地更新迭代现有模型的机器学习算法。学习是为了更好地对环境进行探索,而探索是为了获取数据进行更好的学习。深度强化学习:一切运用了神经网络作为参数结构进行优化的强化学习算法。人工智能定义与分类人工智能(Art
- 遗传进化算法进行高效特征选择
广东数字化转型
算法人工智能
在构建机器学习模型时,特征选择是一个关键的预处理步骤。使用全部特征往往会导致过拟合、增加计算复杂度等问题。因此,我们需要从原始特征集中选择一个最优子集,以提高模型的泛化性能和效率。特征选择的目标是找到一个二元掩码向量,对应每个特征的保留(1)或剔除(0)。例如,对于10个特征,这个掩码向量可能是[1,0,1,1,0,0,1,0,1,0]。我们需要通过某种优化方法,寻找一个使目标函数(如模型的贝叶斯
- 这项来自中国的AI研究介绍了1位全量化训练(FQT):增强了全量化训练(FQT)的能力至1位
量子位AI
人工智能机器学习深度学习
全量化训练(FQT)可以通过将激活、权重和梯度转换为低精度格式来加速深度神经网络的训练。量化过程使得计算速度更快,且内存利用率更低,从而使训练过程更加高效。FQT在尽量减少数值精度的同时,保持了训练的有效性。研究人员一直在研究1位FQT的可行性,试图探索这些限制。该研究首先从理论上分析了FQT,重点关注了如Adam和随机梯度下降(SGD)等知名的优化算法。分析中出现了一个关键发现,那就是FQT收敛
- 数学建模强化宝典(2)linprog
IT 青年
建模强化栈数学建模编程linprog
一、介绍linprog是MATLAB中用于解决线性规划问题的函数。线性规划是一种优化方法,它尝试在满足一组线性等式或不等式约束的条件下,找到一个线性目标函数的最大值或最小值。linprog函数适用于求解形如以下问题的线性规划问题:minimizecTxsubjecttoAx≤bAeqx=beqlb≤x≤ub其中:c是目标函数的系数向量。x是优化变量向量。A和b定义了不等式约束Ax≤b。Aeq和be
- 网站建设完成后, 做seo必须知道的专业知识之--黑帽SEO
博洋科技
seo白帽seoseo
黑帽SEO是指通过不道德或不公平的手段,试图提高网站在搜索引擎中的排名。下面将详细探讨黑帽SEO的各个方面:定义与原理定义概述:黑帽SEO涉及使用作弊策略和技巧,目的在于快速提升网站的搜索引擎排名,而非通过正当的优化方法。工作原理:黑帽SEO绕过搜索引擎的正常使用条款,利用算法的漏洞和弱点,达到快速但短暂的高排名效果。常见手法与案例关键词堆积:在网页内容中过度重复关键词,以误导搜索引擎关于网页的主
- 【XR】优化SLAM SDK的稳定性
大江东去浪淘尽千古风流人物
xr
优化SLAMSDK的稳定性是确保增强现实(AR)和虚拟现实(VR)应用在各种环境和设备上都能稳定运行的关键。以下是一些主要的优化方法:1.传感器融合优化方法:将多个传感器的数据(如摄像头、加速度计、陀螺仪、磁力计)进行融合,以补偿单一传感器可能存在的误差。优势:提高了环境理解的准确性,减少了由于单一传感器误差导致的抖动和漂移现象。实例:ARKit和ARCore都利用了传感器融合技术来增强稳定性。2
- Datawhale X 李宏毅苹果书 AI夏令营 进阶 Task2-自适应学习率+分类
沙雕是沙雕是沙雕
人工智能学习深度学习
目录1.自适应学习率1.1AdaGrad1.2RMSProp1.3Adam1.4学习率调度1.5优化策略的总结2.分类2.1分类与回归的关系2.2带有softmax的分类2.3分类损失1.自适应学习率传统的梯度下降方法在优化过程中常常面临学习率设置不当的问题。固定的学习率在训练初期可能过大,导致模型训练不稳定,而在后期可能过小,导致训练速度缓慢。为了克服这些问题,自适应学习率方法应运而生。这些方法
- 大模型训练优化方法
少喝冰美式
人工智能大语言模型ai大模型大模型应用LLM大模型训练计算机技术
写在前面在训练模型尤其是大模型的时候,如何加快训练速度以及优化显存利用率是一个很关键的问题。本文主要参考HF上的一篇文章:https://huggingface.co/docs/transformers/perf_train_gpu_one,以及笔者在实际训练中的一些经验,给出一些比较实用的方法。先看一个总览的表:方法加快训练速度优化显存利用率BatchsizechoiceYesYesGradie
- 设计模式介绍
tntxia
设计模式
设计模式来源于土木工程师 克里斯托弗 亚历山大(http://en.wikipedia.org/wiki/Christopher_Alexander)的早期作品。他经常发表一些作品,内容是总结他在解决设计问题方面的经验,以及这些知识与城市和建筑模式之间有何关联。有一天,亚历山大突然发现,重复使用这些模式可以让某些设计构造取得我们期望的最佳效果。
亚历山大与萨拉-石川佳纯和穆雷 西乐弗斯坦合作
- android高级组件使用(一)
百合不是茶
androidRatingBarSpinner
1、自动完成文本框(AutoCompleteTextView)
AutoCompleteTextView从EditText派生出来,实际上也是一个文本编辑框,但它比普通编辑框多一个功能:当用户输入一个字符后,自动完成文本框会显示一个下拉菜单,供用户从中选择,当用户选择某个菜单项之后,AutoCompleteTextView按用户选择自动填写该文本框。
使用AutoCompleteTex
- [网络与通讯]路由器市场大有潜力可挖掘
comsci
网络
如果国内的电子厂商和计算机设备厂商觉得手机市场已经有点饱和了,那么可以考虑一下交换机和路由器市场的进入问题.....
这方面的技术和知识,目前处在一个开放型的状态,有利于各类小型电子企业进入
&nbs
- 自写简单Redis内存统计shell
商人shang
Linux shell统计Redis内存
#!/bin/bash
address="192.168.150.128:6666,192.168.150.128:6666"
hosts=(${address//,/ })
sfile="staticts.log"
for hostitem in ${hosts[@]}
do
ipport=(${hostitem
- 单例模式(饿汉 vs懒汉)
oloz
单例模式
package 单例模式;
/*
* 应用场景:保证在整个应用之中某个对象的实例只有一个
* 单例模式种的《 懒汉模式》
* */
public class Singleton {
//01 将构造方法私有化,外界就无法用new Singleton()的方式获得实例
private Singleton(){};
//02 申明类得唯一实例
priva
- springMvc json支持
杨白白
json springmvc
1.Spring mvc处理json需要使用jackson的类库,因此需要先引入jackson包
2在spring mvc中解析输入为json格式的数据:使用@RequestBody来设置输入
@RequestMapping("helloJson")
public @ResponseBody
JsonTest helloJson() {
- android播放,掃描添加本地音頻文件
小桔子
最近幾乎沒有什麽事情,繼續鼓搗我的小東西。想在項目中加入一個簡易的音樂播放器功能,就像華為p6桌面上那麼大小的音樂播放器。用過天天動聽或者QQ音樂播放器的人都知道,可已通過本地掃描添加歌曲。不知道他們是怎麼實現的,我覺得應該掃描設備上的所有文件,過濾出音頻文件,每個文件實例化為一個實體,記錄文件名、路徑、歌手、類型、大小等信息。具體算法思想,
- oracle常用命令
aichenglong
oracledba常用命令
1 创建临时表空间
create temporary tablespace user_temp
tempfile 'D:\oracle\oradata\Oracle9i\user_temp.dbf'
size 50m
autoextend on
next 50m maxsize 20480m
extent management local
- 25个Eclipse插件
AILIKES
eclipse插件
提高代码质量的插件1. FindBugsFindBugs可以帮你找到Java代码中的bug,它使用Lesser GNU Public License的自由软件许可。2. CheckstyleCheckstyle插件可以集成到Eclipse IDE中去,能确保Java代码遵循标准代码样式。3. ECLemmaECLemma是一款拥有Eclipse Public License许可的免费工具,它提供了
- Spring MVC拦截器+注解方式实现防止表单重复提交
baalwolf
spring mvc
原理:在新建页面中Session保存token随机码,当保存时验证,通过后删除,当再次点击保存时由于服务器端的Session中已经不存在了,所有无法验证通过。
1.新建注解:
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
- 《Javascript高级程序设计(第3版)》闭包理解
bijian1013
JavaScript
“闭包是指有权访问另一个函数作用域中的变量的函数。”--《Javascript高级程序设计(第3版)》
看以下代码:
<script type="text/javascript">
function outer() {
var i = 10;
return f
- AngularJS Module类的方法
bijian1013
JavaScriptAngularJSModule
AngularJS中的Module类负责定义应用如何启动,它还可以通过声明的方式定义应用中的各个片段。我们来看看它是如何实现这些功能的。
一.Main方法在哪里
如果你是从Java或者Python编程语言转过来的,那么你可能很想知道AngularJS里面的main方法在哪里?这个把所
- [Maven学习笔记七]Maven插件和目标
bit1129
maven插件
插件(plugin)和目标(goal)
Maven,就其本质而言,是一个插件执行框架,Maven的每个目标的执行逻辑都是由插件来完成的,一个插件可以有1个或者几个目标,比如maven-compiler-plugin插件包含compile和testCompile,即maven-compiler-plugin提供了源代码编译和测试源代码编译的两个目标
使用插件和目标使得我们可以干预
- 【Hadoop八】Yarn的资源调度策略
bit1129
hadoop
1. Hadoop的三种调度策略
Hadoop提供了3中作业调用的策略,
FIFO Scheduler
Fair Scheduler
Capacity Scheduler
以上三种调度算法,在Hadoop MR1中就引入了,在Yarn中对它们进行了改进和完善.Fair和Capacity Scheduler用于多用户共享的资源调度
2. 多用户资源共享的调度
- Nginx使用Linux内存加速静态文件访问
ronin47
Nginx是一个非常出色的静态资源web服务器。如果你嫌它还不够快,可以把放在磁盘中的文件,映射到内存中,减少高并发下的磁盘IO。
先做几个假设。nginx.conf中所配置站点的路径是/home/wwwroot/res,站点所对应文件原始存储路径:/opt/web/res
shell脚本非常简单,思路就是拷贝资源文件到内存中,然后在把网站的静态文件链接指向到内存中即可。具体如下:
- 关于Unity3D中的Shader的知识
brotherlamp
unityunity资料unity教程unity视频unity自学
首先先解释下Unity3D的Shader,Unity里面的Shaders是使用一种叫ShaderLab的语言编写的,它同微软的FX文件或者NVIDIA的CgFX有些类似。传统意义上的vertex shader和pixel shader还是使用标准的Cg/HLSL 编程语言编写的。因此Unity文档里面的Shader,都是指用ShaderLab编写的代码,然后我们来看下Unity3D自带的60多个S
- CopyOnWriteArrayList vs ArrayList
bylijinnan
java
package com.ljn.base;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.concurrent.CopyOnWriteArrayList;
/**
* 总述:
* 1.ArrayListi不是线程安全的,CopyO
- 内存中栈和堆的区别
chicony
内存
1、内存分配方面:
堆:一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式是类似于链表。可能用到的关键字如下:new、malloc、delete、free等等。
栈:由编译器(Compiler)自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中
- 回答一位网友对Scala的提问
chenchao051
scalamap
本来准备在私信里直接回复了,但是发现不太方便,就简要回答在这里。 问题 写道 对于scala的简洁十分佩服,但又觉得比较晦涩,例如一例,Map("a" -> List(11,111)).flatMap(_._2),可否说下最后那个函数做了什么,真正在开发的时候也会如此简洁?谢谢
先回答一点,在实际使用中,Scala毫无疑问就是这么简单。
- mysql 取每组前几条记录
daizj
mysql分组最大值最小值每组三条记录
一、对分组的记录取前N条记录:例如:取每组的前3条最大的记录 1.用子查询: SELECT * FROM tableName a WHERE 3> (SELECT COUNT(*) FROM tableName b WHERE b.id=a.id AND b.cnt>a. cnt) ORDER BY a.id,a.account DE
- HTTP深入浅出 http请求
dcj3sjt126com
http
HTTP(HyperText Transfer Protocol)是一套计算机通过网络进行通信的规则。计算机专家设计出HTTP,使HTTP客户(如Web浏览器)能够从HTTP服务器(Web服务器)请求信息和服务,HTTP目前协议的版本是1.1.HTTP是一种无状态的协议,无状态是指Web浏览器和Web服务器之间不需要建立持久的连接,这意味着当一个客户端向服务器端发出请求,然后We
- 判断MySQL记录是否存在方法比较
dcj3sjt126com
mysql
把数据写入到数据库的时,常常会碰到先要检测要插入的记录是否存在,然后决定是否要写入。
我这里总结了判断记录是否存在的常用方法:
sql语句: select count ( * ) from tablename;
然后读取count(*)的值判断记录是否存在。对于这种方法性能上有些浪费,我们只是想判断记录记录是否存在,没有必要全部都查出来。
- 对HTML XML的一点认识
e200702084
htmlxml
感谢http://www.w3school.com.cn提供的资料
HTML 文档中的每个成分都是一个节点。
节点
根据 DOM,HTML 文档中的每个成分都是一个节点。
DOM 是这样规定的:
整个文档是一个文档节点
每个 HTML 标签是一个元素节点
包含在 HTML 元素中的文本是文本节点
每一个 HTML 属性是一个属性节点
注释属于注释节点
Node 层次
- jquery分页插件
genaiwei
jqueryWeb前端分页插件
//jquery页码控件// 创建一个闭包 (function($) { // 插件的定义 $.fn.pageTool = function(options) { var totalPa
- Mybatis与Ibatis对照入门于学习
Josh_Persistence
mybatisibatis区别联系
一、为什么使用IBatis/Mybatis
对于从事 Java EE 的开发人员来说,iBatis 是一个再熟悉不过的持久层框架了,在 Hibernate、JPA 这样的一站式对象 / 关系映射(O/R Mapping)解决方案盛行之前,iBaits 基本是持久层框架的不二选择。即使在持久层框架层出不穷的今天,iBatis 凭借着易学易用、
- C中怎样合理决定使用那种整数类型?
秋风扫落叶
c数据类型
如果需要大数值(大于32767或小于32767), 使用long 型。 否则, 如果空间很重要 (如有大数组或很多结构), 使用 short 型。 除此之外, 就使用 int 型。 如果严格定义的溢出特征很重要而负值无关紧要, 或者你希望在操作二进制位和字节时避免符号扩展的问题, 请使用对应的无符号类型。 但是, 要注意在表达式中混用有符号和无符号值的情况。
&nbs
- maven问题
zhb8015
maven问题
问题1:
Eclipse 中 新建maven项目 无法添加src/main/java 问题
eclipse创建maevn web项目,在选择maven_archetype_web原型后,默认只有src/main/resources这个Source Floder。
按照maven目录结构,添加src/main/ja
- (二)androidpn-server tomcat版源码解析之--push消息处理
spjich
javaandrodipn推送
在 (一)androidpn-server tomcat版源码解析之--项目启动这篇中,已经描述了整个推送服务器的启动过程,并且把握到了消息的入口即XmppIoHandler这个类,今天我将继续往下分析下面的核心代码,主要分为3大块,链接创建,消息的发送,链接关闭。
先贴一段XmppIoHandler的部分代码
/**
* Invoked from an I/O proc
- 用js中的formData类型解决ajax提交表单时文件不能被serialize方法序列化的问题
中华好儿孙
JavaScriptAjaxWeb上传文件FormData
var formData = new FormData($("#inputFileForm")[0]);
$.ajax({
type:'post',
url:webRoot+"/electronicContractUrl/webapp/uploadfile",
data:formData,
async: false,
ca
- mybatis常用jdbcType数据类型
ysj5125094
mybatismapperjdbcType
MyBatis 通过包含的jdbcType
类型
BIT FLOAT CHAR