【高阶数据结构】跳表

文章目录

  • 一、什么是跳表
  • 二、跳表的效率如何保证?
  • 三、skiplist的实现
  • 四、skiplist跟平衡搜索树和哈希表的对比


一、什么是跳表

skiplist本质上也是一种查找结构,用于解决算法中的查找问题,跟平衡搜索树和哈希表的价值是
一样的,可以作为key或者key/value的查找模型。那么相比而言它的优势是什么的呢?这么等我
们学习完它的细节实现,我们再来对比。

skiplist 是由 William Pugh 发明的,最早出现于他在1990年发表的论文 《Skip Lists: AProbabilistic Alternative to Balanced Trees》

skiplist,顾名思义,首先它是一个list。实际上,它是在有序链表的基础上发展起来的。如果是一
个有序的链表,查找数据的时间复杂度是O(N)

William Pugh开始的优化思路:

  1. 假如我们每相邻两个节点升高一层,增加一个指针,让指针指向下下个节点,如下图b所示。这样所有新增加的指针连成了一个新的链表,但它包含的节点个数只有原来的一半。由于新增加的指针,我们不再需要与链表中每个节点逐个进行比较了,需要比较的节点数大概只有原来的一半。
  2. 以此类推,我们可以在第二层新产生的链表上,继续为每相邻的两个节点升高一层,增加一个指针,从而产生第三层链表。如下图c,这样搜索效率就进一步提高了。
  3. skiplist正是受这种多层链表的想法的启发而设计出来的。实际上,按照上面生成链表的方式,上面每一层链表的节点个数,是下面一层的节点个数的一半,这样查找过程就非常类似二分查找,使得查找的时间复杂度可以降低到O(log n)。但是这个结构在插入删除数据的时候有很大的问题,插入或者删除一个节点之后,就会打乱上下相邻两层链表上节点个数严格的2:1的对应关系。如果要维持这种对应关系,就必须把新插入的节点后面的所有节点(也包括新插入的节点)重新进行调整,这会让时间复杂度重新蜕化成O(n)。
    【高阶数据结构】跳表_第1张图片
    查找的过程:假如要查找的值是key,那么需要看下一个节点的值是否比key大,如果比key大, 就向下走。如果比key小,就向右走。如果没有找到,就会走到第-1层。
    skiplist的设计为了避免这种问题,做了一个大胆的处理,不再严格要求对应比例关系,而是插入一个节点的时候随机出一个层数。这样每次插入和删除都不需要考虑其他节点的层数,这样就好处理多了。细节过程入下图:
    【高阶数据结构】跳表_第2张图片

二、跳表的效率如何保证?

上面我们说到,skiplist插入一个节点时随机出一个层数,听起来怎么这么随意,如何保证搜索时的效率呢?
这里首先要细节分析的是这个随机层数是怎么来的。一般跳表会设计一个最大层数maxLevel的限制,其次会设置一个多增加一层的概率p。那么计算这个随机层数的伪代码如下图:
【高阶数据结构】跳表_第3张图片

在 Redis 的 skiplist 实现中,这两个参数的取值为:p = 1/4maxLevel = 32。注:谷歌的开源项目 LevelDB(小型的 KV 型数据库)也采用了 skiplist,有兴趣的大佬可以了解一下!

根据前面randomLevel()的伪码,我们很容易看出,产生越高的节点层数,概率越低。定量的分析
如下:

  • 节点层数至少为1。而大于1的节点层数,满足一个概率分布。
  • 节点层数恰好等于1的概率为1-p。
  • 节点层数大于等于2的概率为p,而节点层数恰好等于2的概率为p(1-p)。
  • 节点层数大于等于3的概率为p2,而节点层数恰好等于3的概率为p2*(1-p)。
  • 节点层数大于等于4的概率为p3,而节点层数恰好等于4的概率为p3*(1-p)

因此,一个节点的平均层数(也包含的平均指针数目)计算如下:

【高阶数据结构】跳表_第4张图片
现在很容易计算出:

  • 当p=1/2时,每个节点所包含的平均指针数目为2;
  • 当p=1/4时,每个节点所包含的平均指针数目为1.33。

【高阶数据结构】跳表_第5张图片

跳表的平均时间复杂度为O(logN),这个推导的过程比较复杂,这里我们稍微提一下。


三、skiplist的实现

【高阶数据结构】跳表_第6张图片

结点的设计

struct SkiplistNode
{
	int _val;
	vector<SkiplistNode*> _nextV;

	SkiplistNode(int val, int level)
		:_val(val)
		, _nextV(level, nullptr)
	{}
};

因为每个结点的层数是随机的,所以申请一个新节点需要知道其层数和存储的值,通过vector的下标可以表示层数。

整体设计

class Skiplist {
	typedef SkiplistNode Node;
public:
	Skiplist() {
		srand(time(0));

		// 头节点,层数是1
		_head = new SkiplistNode(-1, 1);
	}

private:
	Node* _head; // 哨兵位头节点
	size_t _maxLevel = 32; // 最高的层数
	double _p = 0.25; // 增加一层的概率
};

哨兵位头节点的层数是该跳表中最高的,初始时让哨兵位的层数为1.增加一层的概率是0.25,理论而言,概率越大,效率越高。

节点的随机层数

计算这个随机层数的伪代码如下图:

【高阶数据结构】跳表_第7张图片

C语言产生随机数

int RandomLevel()
{
	size_t level = 1;
	// rand() ->[0, RAND_MAX]之间
	// rand() 《= RAND_MAX*_p 可以保证增加一层的概率是_p
	// level <= maxLevel 保证随机层数不超过最高层数maxLevel
	while (rand() <= RAND_MAX*_p && level < _maxLevel)
	{
		++level;
	}
	return level;
}

C++产生随机数

int RandomLevel()
{
	static std::default_random_engine generator(std::chrono::system_clock::now().time_since_epoch().count());
	static std::uniform_real_distribution<double> distribution(0.0, 1.0);

	size_t level = 1;
	while (distribution(generator) <= _p && level < _maxLevel)
	{
		++level;
	}

	return level;
}

这里我们需要注意的是:因为C语言产生的随机数范围是0到32767之间的数,范围比较小。不过可以通过加减一些数来扩大随机数的范围。

skiplist的查找

查找的过程:查找是要和下一个节点的值相比,并不是和当前节点的值相比一开始cur在哨兵位头节点的最高层 head,开始进行比较。假如要查找的值为target,如果下一个节点为空或者下一个节点的值比target大,那么cur需要向下一层走;如果下一个节点的值比target下,那么cur向右走。重复上述过程,直至找到或者没找到(没找到的话,cur会去到第-1层,注:层数是从第0层开始的)

bool search(int target) {
	Node* cur = _head;
	int level = _head->_nextV.size() - 1;
	while (level >= 0)
	{
		// 目标值比下一个节点值要大,向右走
		// 下一个节点是空(尾),目标值比下一个节点值要小,向下走
		if (cur->_nextV[level] && cur->_nextV[level]->_val < target)
		{
			// 向右走
			cur = cur->_nextV[level];
		}
		else if (cur->_nextV[level] == nullptr || cur->_nextV[level]->_val > target)
		{
			// 向下走
			--level;
		}
		else
		{
			return true;
		}
	}
	
	return false;
}

skiplist的插入

无论是插入值还是删除值,都需要找到该值的前面的节点,这样才能修改指针的指向关系。我们可以将这个保存前一个指针的操作封装成一个函数,提供给插入和删除接口使用。

vector<Node*> FindPrevNode(int num)
{
	Node* cur = _head;
	int level = _head->_nextV.size() - 1;

	// 插入位置每一层前一个节点指针
	vector<Node*> prevV(level + 1, _head);

	while (level >= 0)
	{
		// 目标值比下一个节点值要大,向右走
		// 下一个节点是空(尾),目标值比下一个节点值要小,向下走
		if (cur->_nextV[level] && cur->_nextV[level]->_val < num)
		{
			// 向右走
			cur = cur->_nextV[level];
		}
		else if (cur->_nextV[level] == nullptr
			|| cur->_nextV[level]->_val >= num)
		{
			// 更新level层前一个
			prevV[level] = cur;

			// 向下走
			--level;
		}
	}

	return prevV;
}

void add(int num) {
	vector<Node*> prevV = FindPrevNode(num);
	
	int n = RandomLevel();
	Node* newnode = new Node(num, n);
	
	// 如果n超过当前最大的层数,那就升高一下_head的层数
	if (n > _head->_nextV.size())
	{
		_head->_nextV.resize(n, nullptr);
		prevV.resize(n, _head);
	}
	
	// 链接前后节点
	for (size_t i = 0; i < n; ++i)
	{
		newnode->_nextV[i] = prevV[i]->_nextV[i];
		prevV[i]->_nextV[i] = newnode;
	}
}

删除节点
【高阶数据结构】跳表_第8张图片

bool erase(int num) {
	vector<Node*> prevV = FindPrevNode(num);

	// 第一层下一个不是val,val不在表中
	if (prevV[0]->_nextV[0] == nullptr || prevV[0]->_nextV[0]->_val != num)
	{
		return false;
	}
	else
	{
		Node* del = prevV[0]->_nextV[0];
		// del节点每一层的前后指针链接起来
		for (size_t i = 0; i < del->_nextV.size(); i++)
		{
			prevV[i]->_nextV[i] = del->_nextV[i];
		}
		delete del;

		// 如果删除最高层节点,把头节点的层数也降一下
		int i = _head->_nextV.size() - 1;
		while (i >= 0)
		{
			if (_head->_nextV[i] == nullptr)
				--i;
			else
				break;
		}
		_head->_nextV.resize(i + 1);

		return true;
}

注意:如果删除的节点的层数是最高的,那么可以将哨兵位头结点的层数降一降。如何判断删除的节点层数是不是最高的呢?从哨兵位头结点的最高层其,如果该层的指针指向空,那么就说明删除的节点层数最高。当前层指针指向空,那么就需要看下一层指针是否指向空。以此类推,直至指针不在指向空,那么就可以求出删除最高节点后剩余节点的最高层数了。

【高阶数据结构】跳表_第9张图片

打印跳表

void Print()
{
	Node* cur = _head;
	while (cur)
	{
		printf("%2d\n", cur->_val);
		// 打印每个每个cur节点
		for (auto e : cur->_nextV)
		{
			printf("%2s", "↓");
		}	
		printf("\n");

		cur = cur->_nextV[0];
	}
}

打印跳表函数可以让我们更好的观察跳表的样子。

完整代码

#include 
#include 
#include 
#include 
#include 
using namespace std;

struct SkiplistNode
{
	int _val;
	vector<SkiplistNode*> _nextV;

	SkiplistNode(int val, int level)
		:_val(val)
		, _nextV(level, nullptr)
	{}
};

class Skiplist {
	typedef SkiplistNode Node;
public:
	Skiplist() {
		srand(time(0));

		// 头节点,层数是1
		_head = new SkiplistNode(-1, 1);
	}

	bool search(int target) {
		Node* cur = _head;
		int level = _head->_nextV.size() - 1;
		while (level >= 0)
		{
			// 目标值比下一个节点值要大,向右走
			// 下一个节点是空(尾),目标值比下一个节点值要小,向下走
			if (cur->_nextV[level] && cur->_nextV[level]->_val < target)
			{
				// 向右走
				cur = cur->_nextV[level];
			}
			else if (cur->_nextV[level] == nullptr || cur->_nextV[level]->_val > target)
			{
				// 向下走
				--level;
			}
			else
			{
				return true;
			}
		}

		return false;
	}

	vector<Node*> FindPrevNode(int num)
	{
		Node* cur = _head;
		int level = _head->_nextV.size() - 1;

		// 插入位置每一层前一个节点指针
		vector<Node*> prevV(level + 1, _head);

		while (level >= 0)
		{
			// 目标值比下一个节点值要大,向右走
			// 下一个节点是空(尾),目标值比下一个节点值要小,向下走
			if (cur->_nextV[level] && cur->_nextV[level]->_val < num)
			{
				// 向右走
				cur = cur->_nextV[level];
			}
			else if (cur->_nextV[level] == nullptr
				|| cur->_nextV[level]->_val >= num)
			{
				// 更新level层前一个
				prevV[level] = cur;

				// 向下走
				--level;
			}
		}

		return prevV;
	}

	void add(int num) {
		vector<Node*> prevV = FindPrevNode(num);

		int n = RandomLevel();
		Node* newnode = new Node(num, n);

		// 如果n超过当前最大的层数,那就升高一下_head的层数
		if (n > _head->_nextV.size())
		{
			_head->_nextV.resize(n, nullptr);
			prevV.resize(n, _head);
		}

		// 链接前后节点
		for (size_t i = 0; i < n; ++i)
		{
			newnode->_nextV[i] = prevV[i]->_nextV[i];
			prevV[i]->_nextV[i] = newnode;
		}
	}

	bool erase(int num) {
		vector<Node*> prevV = FindPrevNode(num);

		// 第一层下一个不是val,val不在表中
		if (prevV[0]->_nextV[0] == nullptr || prevV[0]->_nextV[0]->_val != num)
		{
			return false;
		}
		else
		{
			Node* del = prevV[0]->_nextV[0];
			// del节点每一层的前后指针链接起来
			for (size_t i = 0; i < del->_nextV.size(); i++)
			{
				prevV[i]->_nextV[i] = del->_nextV[i];
			}
			delete del;

			// 如果删除最高层节点,把头节点的层数也降一下
			int i = _head->_nextV.size() - 1;
			while (i >= 0)
			{
				if (_head->_nextV[i] == nullptr)
					--i;
				else
					break;
			}
			_head->_nextV.resize(i + 1);

			return true;
		}

		
	}

	//int RandomLevel()
	//{
	//	size_t level = 1;
	//	// rand() ->[0, RAND_MAX]之间
	//	while (rand() <= RAND_MAX*_p && level < _maxLevel)
	//	{
	//		++level;
	//	}

	//	return level;
	//}

	int RandomLevel()
	{
		static std::default_random_engine generator(std::chrono::system_clock::now().time_since_epoch().count());
		static std::uniform_real_distribution<double> distribution(0.0, 1.0);

		size_t level = 1;
		while (distribution(generator) <= _p && level < _maxLevel)
		{
			++level;
		}

		return level;
	}

	void Print()
	{
		/*int level = _head->_nextV.size();
		for (int i = level - 1; i >= 0; --i)
		{
			Node* cur = _head;
			while (cur)
			{
				printf("%d->", cur->_val);
				cur = cur->_nextV[i];
			}
			printf("\n");
		}*/

		Node* cur = _head;
		while (cur)
		{
			printf("%2d\n", cur->_val);
			// 打印每个每个cur节点
			for (auto e : cur->_nextV)
			{
				printf("%2s", "↓");
			}	
			printf("\n");

			cur = cur->_nextV[0];
		}
	}
	
private:
	Node* _head;
	size_t _maxLevel = 32;
	double _p = 0.5;
};

四、skiplist跟平衡搜索树和哈希表的对比

  • skiplist 相比平衡搜索树(AVL 树和红黑树)对比,都可以做到遍历数据有序,时间复杂度也差不多。skiplist 的优势是:a、skiplist 实现简单,容易控制。平衡树增删查改遍历都更复杂。b、skiplist 的额外空间消耗更低。平衡树节点存储每个值有三叉链,平衡因子或者颜色等消耗。skiplist 中 p = 1 / 2 时,每个节点所包含的平均指针数目为 2;skiplist 中 p = 1 / 4 时,每个节点所包含的平均指针数目为 1.33;
  • skiplist 相比哈希表而言,就没有那么大的优势了。相比而言,a、哈希表平均时间复杂度是 O(1),比 skiplist快。b、哈希表空间消耗略多一点。skiplist 优势如下:a、遍历数据有序。b、skiplist 空间消耗略小一点,哈希表存在链接指针和表空间消耗。c、哈希表扩容有性能损耗。d、哈希表在极端场景下哈希冲突高,效率下降厉害,需要红黑树补足接力。

【高阶数据结构】跳表_第10张图片


你可能感兴趣的:(数据结构,数据结构,redis)