- 数据库领域下的时序数据库并发控制
数据库管理艺术
数据库专家之路大数据AI人工智能MCP&Agent数据库时序数据库ai
时序数据库并发控制:原理、实现与最佳实践关键词:时序数据库、并发控制、MVCC、时间戳排序、乐观并发控制、分布式事务、性能优化摘要:本文深入探讨时序数据库中的并发控制机制,从基本原理到实际实现进行全面剖析。文章首先介绍时序数据库的特点和并发控制挑战,然后详细分析MVCC、时间戳排序等核心算法原理,并通过代码示例展示实现细节。接着探讨分布式环境下的特殊考量,提供性能优化策略和实际应用案例。最后展望未
- CARLsim开源程序 是一个高效、易用、GPU 加速的软件框架,用于模拟具有高度生物细节的大规模脉冲神经网络 (SNN) 模型。
struggle2025
神经网络人工智能深度学习
一、软件介绍文末提供程序和源码下载CARLsim是一个高效、易用的GPU加速库,用于模拟具有高度生物学细节的大规模脉冲神经网络(SNN)模型。CARLsim允许在通用x86CPU和标准现成GPU上以逼真的突触动力学执行Izhikevich脉冲神经元网络。该模拟器在C/C++中提供了一个类似PyNN的编程接口,允许在突触、神经元和网络级别指定详细信息和参数。二、CARLsim6的新功能包括:CUDA
- 【C++】C++的虚析构函数
C++的虚析构函数1.语法规则:2.用途:3.原理:示例代码:4.下面解释为什么基类未定义为析构函数时,析构子类(派生类)对象也能把基类对象析构的原因4.1核心原理:编译器自动生成的析构函数调用链4.1.1对象构造与析构的镜像对称原则4.1.2编译器在派生类析构函数中插入隐式代码4.2底层机制分步解析4.3技术细节说明4.3.1.this指针调整4.3.2.继承链处理4.3.3.与虚函数无关1.语
- 遥感影像数据处理-大图滑窗切分为小图
GIS潮流
遥感语义分割
功能需求据所周知,遥感影像的尺寸有大有小,大的达到几万x几万像素,而图像分割算法模型在训练中尺寸适中,比如256x256,512x512,1024x1024等等,如果直接将遥感影像的原图输入模型中进行训练,大概率会提示内存和显存不足,因此针对遥感影像的模型训练,一般都需要将影像裁剪为小图。裁剪后的效果图如下:解决思路基于上面的需求,写了一套裁剪算法流程。主要考虑的是在裁剪过程中,从左往右、从上到下
- 大学专业科普 | 图像处理、智能控制与计算机工程
鸭鸭鸭进京赶烤
计算机工程
计算机工程专业介绍计算机工程专业是一个非常热门且具有广泛发展前景的领域,它涵盖了计算机硬件、软件以及它们之间的交互等多个方面。以下是对计算机工程专业的详细介绍:专业定义计算机工程专业主要是研究计算机系统的设计、开发、测试和维护。它融合了计算机科学和电子工程的知识,侧重于计算机硬件和软件的协同工作,以及计算机系统在各个领域的应用。课程设置基础课程数学课程物理课程计算机基础课程专业核心课程硬件方向课程
- 邮科ODM摄像头高温生存法则
在钢铁冶炼等高温工业场景,监控设备面临光学性能衰减、电子元件失效、材料形变等多重挑战。经过实测,环境温度超60℃,普通摄像头图像噪点激增300%、焦点偏移。本文以邮科ODM摄像头为例,揭示其突破环境限制的逻辑。一、高温对监控设备的复合挑战工业高温环境对监控设备影响呈链式反应。测试中,75℃时摄像头图像传感器暗电流噪声增4倍,夜视画面出现大量绿色噪点,镜头组材料热膨胀系数差异致光学失焦,关键设备读数
- KITTI数据集可视化实用教程及源码解析
国营窝窝乡蛮大人
本文还有配套的精品资源,点击获取简介:本文详细介绍如何使用源码实现KITTI数据集的可视化,强调数据集可视化在计算机视觉领域的关键作用。重点介绍如何加载、处理和融合KITTI数据集中的图像和激光雷达数据,并通过可视化手段分析结果,包括图像点云投影、坐标转换、颜色映射等技术。读者将通过学习源码深入理解数据结构、文件格式,并定制化工具以满足特定项目需求。1.计算机视觉数据集可视化的重要性在计算机视觉领
- 物联网嵌入式硬件开发管理指南(超详细版):基于三种外包方式的三阶段策略
Hy行者勇哥
绿色智造·产品设计与管理物联网嵌入式硬件struts
目录摘要1.引言2.物联网嵌入式硬件开发概述3.软硬件工作边界与技术细节3.1硬件工作内容与技术细节需求分析:原理图设计:PCB设计:样机制造:硬件测试:量产支持:3.2软件工作内容与技术细节固件开发:通信协议:应用逻辑:软件测试:软硬件集成:3.3软硬件交互与物联网特性4.三阶段外包策略规划(三种方式)4.1阶段一:技术顾问外包4.2阶段二:部分开发外包4.3阶段三:独立开发外包5.非专业管理者
- 导数:微积分的核心概念与实用解析
你一身傲骨怎能输
数学分析导数
文章摘要导数是描述函数瞬时变化率的数学工具,定义为极限值(f’(a)=limh→0f(a+h)−f(a)h)\lim_{h\to0}\frac{f(a+h)-f(a)}{h})limh→0hf(a+h)−f(a)),若存在则称函数在点a可导。其几何意义是函数图像在点(a,f(a))处切线的斜率。导数计算的是函数值增量与自变量增量比值的极限,反映瞬时变化率。例如,(f(x)=x^2)的导数为(f’
- 人工智能-基础篇-10-什么是卷积神经网络CNN(网格状数据处理:输入层,卷积层,激活函数,池化层,全连接层,输出层等)
weisian151
人工智能人工智能cnn神经网络
卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种专为处理网格状数据(如图像、视频、音频)设计的深度学习模型。它通过模拟生物视觉机制,从原始数据中自动提取多层次的特征,最终实现高效的分类、检测或生成任务。1、核心概念与原理1、生物视觉启发局部感受野:模仿人类视觉皮层神经元仅响应局部区域刺激的特性,每个神经元关注输入数据的局部区域(如图像的一小块区域)。权值共享:同一
- 深度解析 LangGraph 多智能体系统的通信机制与状态管理策略
佑瞻
LangChainLangGraphlanggraph
构建多智能体系统时,通信机制与状态管理是决定系统效能的核心要素。当智能体数量超过3个时,系统常面临通信延迟、状态冲突等挑战。本文将系统化解析LangGraph中智能体交互的技术细节,帮助开发者构建高效稳定的多智能体协作体系。一、智能体通信的四大核心维度1.1通信模式选择:交接与工具调用的技术分野智能体间通信存在两种基础模式,其选择取决于状态传递需求:交接(Handoffs)模式适用于复杂状态传递场
- CNN-GRU混合模型学习笔记
weixin_54372988
cnngru学习
GRU学习笔记CNN:卷积神经网络GRU(GateRecurrentUnit),门控循环单元CNN:卷积神经网络3个组成部分:1.卷积层——提取图像局部特征2.池化层——降维(防止过拟合)3.全连接层——输出结果一个卷积核扫完整张图片,得到每个小区域的特征值具体应用中通常有多个卷积核CNN可能有多层结构,如LeNet-5:卷积层–池化层–卷积层–池化层–卷积层–全连接层处理时间序列(1D序列):(
- 构建私有视觉搜索应用:多模态大模型的应用实例
2301_80727036
自然语言处理
在当今的科技时代,视觉搜索功能已经不再是新鲜事物,许多智能手机用户都可以通过自然语言搜索照片。随着开源多模态大型语言模型(Multi-modalLLMs)的兴起,我们现在可以为自己构建这种视觉搜索应用,用于管理自己的私人照片收藏。本教程将向您展示如何通过代码示例,使用开源多模态LLM构建私有视觉搜索和问答系统。技术背景介绍多模态大模型结合了文本和图像处理能力,使得我们可以开发更智能的应用程序。通过
- 多模态融合相机L3CAM
moonsims
人工智能
多模态融合相机L3CAML3CAM是Beamagine公司推出的多模态传感器融合技术,结合了激光雷达(LiDAR)和可见光摄像头,旨在为自动驾驶、工业机器人和其他需要精确环境感知的应用场景提供高效、安全的解决方案。L3CAM技术参数L3CAM结合了LiDAR和可见光摄像头,使其能够提供三维空间感知及图像级别的环境识别能力激光雷达部分(LiDAR)探测范围:大约200米(具体范围根据不同环境和反射面
- RecycleView实现 viewFlipper 广告条垂直滚动效果(仿叮咚买菜)
鸿蒙小林
安卓开发java技术支持安卓javaandroidandroid-studio
demo码云代码仓库实现效果viewFlipper的使用这里就不介绍了,想通过viewFlipper实现广告条滚动效果的可以去看git上的这个案例因为不是什么太难的功能就不对细节做太多的讲解了,代码里有我写好的注释,直接上代码view/***@authorwhl*Createdon:3/1/223:07PM*description*/publicclassUpRollRecyclerFragmen
- 【软件系统架构】系列四:数字信号处理器(DSP)
目录一、什么是DSP?二、DSP的核心架构特点1.基本结构2.工作流程:3.关键特性:三、DSP与MCU/MPU/NPU的对比四、DSP与通用处理器的对比五、常用DSP算法类型六、常见DSP芯片平台七、开发工具链与语言支持八、典型应用场景举例通信领域:音频处理:图像与视频处理:工业控制:军事与航空航天:九、选型关键因素十、技术趋势总结一、什么是DSP?DSP(DigitalSignalProces
- MQTT 和 CoAP物联网通信协议之争:MQTT 与CoAP 深度对比分析
34号树洞
#MQTT专栏物联网传输层通信专栏物联网通讯协议MQTTCoAP
目录一、核心特性对比二、关键设计目标1.MQTT2.CoAP三、优缺点分析MQTT的优缺点CoAP的优缺点四、典型应用场景对比五、技术细节对比1.消息传输流程2.安全性实现3.资源发现机制六、选择建议1.优先选择MQTT的场景2.优先选择CoAP的场景3.混合使用策略七、未来趋势总结在物联网(IoT)领域,选择合适的通信协议对于设备性能、电池寿命、网络效率和应用可靠性至关重要。MQTT(Messa
- Dify实现图文混排的智能问答实践
一望无际的大草原
Dify高级应用工作总结Agent数据分析agent智能客服
最近在做类似于各大平台中广泛应用的智能客服,相当于基于各平台的用户操作手册,业务流程场景等文档资料,开发一个类似于智能客服的自动化问答应用。主要基于dify进行开发,但对数据有些特殊要求,之前大家做的都是基于文本的,结合大模型返回的结果主要也是文本信息,这种方式不够直观全面,也有信息丢失,同时,一般这些资料中都包含了大量的图文结合内容,很多问题的答复需要结合图像进行答复更加直观,因此对其进行简单的
- 半导体器件仿真:光电器件仿真_(6).光电二极管仿真
kkchenkx
信号仿真2信号处理信息可视化
光电二极管仿真1.引言光电二极管是一种能够将光能转换为电能的半导体器件。在光通信、图像传感器、光检测器和太阳能电池等领域有广泛的应用。光电二极管的仿真可以帮助设计者了解器件的工作原理、性能参数以及优化设计。本节将详细介绍光电二极管的仿真原理和步骤,包括器件结构、物理模型、仿真软件的使用方法以及具体的仿真案例。2.光电二极管的基本结构和工作原理2.1器件结构光电二极管通常由一个PN结或PIN结组成。
- 加快Dlib人脸检测速度
weixin_46019223
opencv人脸识别视频处理机器学习
加快Dlib人脸检测速度前言一、让电脑以最大运行效率运行二、开启Dlib自带的加速三、彩色图像转灰度图像四、其它的坑总结前言使用dlib人脸检测接口detector()速度过慢,导致视频只有1帧所以找了一些方法,并解决了一些问题将视频帧数提升到了十几帧。一、让电脑以最大运行效率运行之前笔记本电脑,都是没插电源运行得,插了之后视频变成了两帧(-_-||),但是可以查看电脑电源设置,查看cup是否全速
- Python dlib(HOG+SVM)人脸识别总结
程序媛一枚~
人脸识别python支持向量机开发语言读书笔记人脸检测识别
Pythondlib(HOG+SVM)人脸识别总结面部标志检测dlib68点(HOG+SVM),194点人脸识别模型,包括口(外嘴唇,内嘴唇),鼻,眉毛(左右眉),眼睛(左右眼),下鄂5点面部标志检测器(左眼2点,右眼2点,鼻子1点)面部对齐更高效眨眼检测ear眨眼瞬间达到0疲劳驾驶检测—连续帧ear面部对齐眼睛连线反正切获取旋转角度,期望图像眼睛横长度计算比率左眼计算右眼相对坐标眼睛横中心点作为
- 多种语言采集淘宝京东价格监控API接口,json响应示例参考
ID_18007905473
API大数据运维
淘宝和京东作为国内主流电商平台,均提供价格监控相关的API接口,但接口的开放程度、使用规则及功能细节存在差异。以下是针对两大平台价格监控API的核心对比与分析:一、淘宝价格监控API接口接口类型与功能商品详情接口(如taobao.item.get):可获取商品基本信息(标题、价格、库存等),但价格字段可能为静态值,无法直接获取实时价格波动。促销活动接口:部分接口可返回促销价(如满减、折扣),但需结
- antd Table組件,实现三次表格嵌套;
烟雨-yaya
react.jsjavascript前端
文章目录概要示例代码技术细节小结概要本次学习到使用antd里table组件实现三级表格嵌套;父级点击+号出现子表;子级点击+号出现孙表;示例table表格录制代码importReact,{useEffect,useState,useMemo}from"react";import{Table,Divider}from"antd";constMultiLevelTable=()=>{const[exp
- CNN-LSTM神经网络多输入单输出回归预测【MATLAB】
沅_Yuan
炼丹师神经网络cnnlstm
1CNN(卷积神经网络)部分作用:特征提取:CNN主要用于从输入数据中提取空间特征。它能够处理图像、视频帧或其他形式的空间数据。组成部分:卷积层:使用卷积核对输入数据进行卷积操作,生成特征图。激活函数:通常使用ReLU(线性整流单元)激活函数,增加非线性。池化层:通过最大池化(MaxPooling)或平均池化(AveragePooling),减少特征图的尺寸,保留最重要的特征,减少计算复杂度。流程
- DAY 41 简单CNN
冬天给予的预感
cnn人工智能神经网络
知识回顾数据增强卷积神经网络定义的写法batch归一化:调整一个批次的分布,常用与图像数据特征图:只有卷积操作输出的才叫特征图调度器:直接修改基础学习率卷积操作常见流程如下:1.输入→卷积层→Batch归一化层(可选)→池化层→激活函数→下一层Flatten->Dense(withDropout,可选)->Dense(Output)importtorchimporttorch.nnasnnimpo
- Python打卡训练营-Day41-简单CNN
traMpo1ine
cnnpython深度学习
@浙大疏锦行知识回顾数据增强卷积神经网络定义的写法batch归一化:调整一个批次的分布,常用与图像数据特征图:只有卷积操作输出的才叫特征图调度器:直接修改基础学习率卷积操作常见流程如下:1.输入→卷积层→Batch归一化层(可选)→池化层→激活函数→下一层Flatten->Dense(withDropout,可选)->Dense(Output)这里相关的概念比较多,如果之前没有学习过复试班强化班中
- 程序员思维
SHIZHONGYUO
思维语言应用程序软件编程
起因首先简单说一下,为什么我会想到这个话题。主要有这么几方面的原因。当我试图回过头去总结大学在计算机专业所学习的一些理论和知识的时候。发现,在学校里面学习的一些东西,走了两个极端。一个极端是偏向了细节。比如我们学习的那些《***程序设计》的课程。看这几门课的名称的我们能够很明显的看出,***是一个形容词定语,用来修饰主题“程序设计”。但是,你却非常意外的意识到《C++面向对象程序设计》和面向对象程
- 数据标注工具详解
Sally璐璐
ai大数据
数据标注工具是构建高质量AI训练数据集的核心基础设施,其功能覆盖图像、文本、视频、音频、3D点云等多模态数据的标注与管理。以下从工具类型、核心功能、行业应用及技术趋势等方面进行系统介绍:一、主流数据标注工具分类与特性1.通用型标注平台LabelStudio由Heartex开发的开源工具,支持文本、图像、视频、音频及时间序列数据标注,可通过YAML自定义标注界面19。其内置质量控制机制(如标注审核、
- 图像处理100问-中文版(记录)
STO检测王
学习
https://gitee.com/mengfansheng163/ImageProcessing100Wen
- 基于MATLAB图像特征识别及提取实现图像分类
jghhh01
机器学习算法人工智能
基于MATLAB的图形处理程序,可以进行图像特征识别及提取,进而实现图像分类。hog_svm.m,2276svm_images/test_image/1.jpg,20980svm_images/test_image/2.jpg,18246svm_images/test_image/3.jpg,13835svm_images/test_image/4.jpg,18539svm_images/test
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,