acwing算法基础课——子矩阵的和

acwing算法基础课——子矩阵的和_第1张图片

输入一个 nn 行 mm 列的整数矩阵,再输入 qq 个询问,每个询问包含四个整数 x1,y1,x2,y2x1,y1,x2,y2,表示一个子矩阵的左上角坐标和右下角坐标。

对于每个询问输出子矩阵中所有数的和。

输入格式

第一行包含三个整数 n,m,qn,m,q。

接下来 nn 行,每行包含 mm 个整数,表示整数矩阵。

接下来 qq 行,每行包含四个整数 x1,y1,x2,y2x1,y1,x2,y2,表示一组询问。

输出格式

共 qq 行,每行输出一个询问的结果。

数据范围

1≤n,m≤10001≤n,m≤1000,
1≤q≤2000001≤q≤200000,
1≤x1≤x2≤n1≤x1≤x2≤n,
1≤y1≤y2≤m1≤y1≤y2≤m,
−1000≤矩阵内元素的值≤1000

输入样例:

3 4 3
1 7 2 4
3 6 2 8
2 1 2 3
1 1 2 2
2 1 3 4
1 3 3 4

输出样例

17
27
21

题解:

#include

using namespace std;

const int N = 1010;
int a[N][N];
int s[N][N];
int main()
{
	int n, m, q, i, j;
	cin >> n >> m >> q;
	for (i = 1; i <= n; i++)
		for (j = 1; j <= m; j++)
			scanf("%d", &a[i][j]);
    //初始化前缀数组
	for (i = 1; i <= n; i++)
		for (j = 1; j <= m; j++)
			s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + a[i][j];
    //询问
	while (q--)
	{
		int x1, y1, x2, y2;
		scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
		printf("%d\n", s[x2][y2] - s[x1 - 1][y2] - s[x2][y1 - 1] + s[x1 - 1][y1 - 1]);
	}
	return 0;
}

你可能感兴趣的:(算法,矩阵,线性代数)