深度学习——批标准化Batch Normalization

什么是批标准化?

批标准化(Batch Normalization)是深度学习中常用的一种技术,旨在加速神经网络的训练过程并提高模型的收敛速度。
批标准化通过在神经网络的每一层中对输入数据进行标准化来实现。具体而言,对于每个输入样本,在每一层的前向传播过程中,都会计算其均值和方差,并使用批量内的均值和方差对输入进行标准化。标准化后的数据会经过缩放和平移操作,使得网络可以学习到适合当前任务的特定数据分布。这样做的好处包括:
1.收敛速度更快:批标准化有助于避免梯度消失和梯度爆炸问题,使得神经网络在训练过程中更快地收敛。
2.允许更高的学习率:标准化输入可以使学习率的选择更加宽松,使得学习过程更加稳定。
3.正则化作用:批标准化在一定程度上具有正则化的效果,有助于防止过拟合。
4.不那么依赖初始化:由于标准化的存在,对网络的初始权重设置并不像传统网络那样敏感,这简化了网络的初始化过程。

对比使用批标准化和不使用批标准化

import torch
from torch import nn
from torch.nn import init
import torch.utils.data as Data
import matplotlib.pyplot as plt
import numpy as np

# 用于可复现
# torch.manual_seed(1)    # reproducible
# np.random.seed(1)

# Hyper parameters
# 样本点
N_SAMPLES = 2000
# 批大小
BATCH_SIZE = 64
# 轮次
EPOCH = 12
# 学习率
LR = 0.03
# 隐藏层层数
N_HIDDEN = 8
# 激活函数
ACTIVATION = torch.tanh
B_INIT = -0.2   # use a bad bias constant initializer

# training data
# 生成-7到10之间的N_SAMPLES个值的等差数列,并将其转化为一个二维列向量
x = np.linspace(-7, 10, N_SAMPLES)[:, np.newaxis]
# 生成一个均值为0,标准差为2的和x相同形状的噪声数据
noise = np.random.normal(0, 2, x.shape)
# 生成x对应的y值
y = np.square(x) - 5 + noise

# test data
test_x = np.linspace(-7, 10, 200)[:, np.newaxis]
noise = np.random.normal(0, 2, test_x.shape)
test_y = np.square(test_x) - 5 + noise

train_x = torch.from_numpy(x).float()
train_y = torch.from_numpy(y).float()
test_x = torch.from_numpy(test_x).float()
test_y = torch.from_numpy(test_y).float()

train_dataset = Data.TensorDataset(train_x, train_y)
train_loader = Data.DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=2,)

# show data
# plt.scatter(train_x.numpy(), train_y.numpy(), c='#FF9359', s=50, alpha=0.2, label='train')
# plt.scatter(test_x.numpy(), test_y.numpy(), c='blue', s=50, alpha=0.2, label='test')
# plt.legend(loc='best')



class Net(nn.Module):
    def __init__(self, batch_normalization=False):
        super(Net, self).__init__()
        # 是否进行批标准化
        self.do_bn = batch_normalization
        # 全连接层的列表
        self.fcs = []
        # 批标准化层的列表
        self.bns = []
        self.bn_input = nn.BatchNorm1d(1, momentum=0.5)   # for input data

        for i in range(N_HIDDEN):               # build hidden layers and BN layers
            # 如果是第一层,输入神经元个数为1,其余为10个
            input_size = 1 if i == 0 else 10
            # 全连接层
            fc = nn.Linear(input_size, 10)
            # 将全连接层重新命名然后设置为类属性
            setattr(self, 'fc%i' % i, fc)       # IMPORTANT set layer to the Module
            # 对全连接层的参数进行初始化
            self._set_init(fc)                  # parameters initialization
            # 添加到列表中
            self.fcs.append(fc)
            if self.do_bn:
                bn = nn.BatchNorm1d(10, momentum=0.5)
                setattr(self, 'bn%i' % i, bn)   # IMPORTANT set layer to the Module
                self.bns.append(bn)

        self.predict = nn.Linear(10, 1)         # output layer
        self._set_init(self.predict)            # parameters initialization

    def _set_init(self, layer):
        init.normal_(layer.weight, mean=0., std=.1)
        init.constant_(layer.bias, B_INIT)

    # 前向传播
    def forward(self, x):
        pre_activation = [x]
        if self.do_bn:
            x = self.bn_input(x)     # input batch normalization
        layer_input = [x]
        for i in range(N_HIDDEN):
            x = self.fcs[i](x)
            pre_activation.append(x)
            if self.do_bn: x = self.bns[i](x)   # batch normalization
            x = ACTIVATION(x)
            layer_input.append(x)
        out = self.predict(x)
        # 返回预测值、每个隐藏层的输入、激活函数的输出
        return out, layer_input, pre_activation


nets = [Net(batch_normalization=False), Net(batch_normalization=True)]

# print(*nets)    # print net architecture

# 优化器
opts = [torch.optim.Adam(net.parameters(), lr=LR) for net in nets]
# MSE作为损失函数
loss_func = torch.nn.MSELoss()


def plot_histogram(l_in, l_in_bn, pre_ac, pre_ac_bn):
    for i, (ax_pa, ax_pa_bn, ax, ax_bn) in enumerate(zip(axs[0, :], axs[1, :], axs[2, :], axs[3, :])):
        [a.clear() for a in [ax_pa, ax_pa_bn, ax, ax_bn]]
        if i == 0:
            p_range = (-7, 10);the_range = (-7, 10)
        else:
            p_range = (-4, 4);the_range = (-1, 1)
        ax_pa.set_title('L' + str(i))
        ax_pa.hist(pre_ac[i].data.numpy().ravel(), bins=10, range=p_range, color='#FF9359', alpha=0.5);ax_pa_bn.hist(pre_ac_bn[i].data.numpy().ravel(), bins=10, range=p_range, color='#74BCFF', alpha=0.5)
        ax.hist(l_in[i].data.numpy().ravel(), bins=10, range=the_range, color='#FF9359');ax_bn.hist(l_in_bn[i].data.numpy().ravel(), bins=10, range=the_range, color='#74BCFF')
        for a in [ax_pa, ax, ax_pa_bn, ax_bn]: a.set_yticks(());a.set_xticks(())
        ax_pa_bn.set_xticks(p_range);ax_bn.set_xticks(the_range)
        axs[0, 0].set_ylabel('PreAct');axs[1, 0].set_ylabel('BN PreAct');axs[2, 0].set_ylabel('Act');axs[3, 0].set_ylabel('BN Act')
    plt.pause(0.01)


if __name__ == "__main__":
    f, axs = plt.subplots(4, N_HIDDEN + 1, figsize=(10, 5))
    # 开启动态绘制
    plt.ion()  # something about plotting
    plt.show()

    # training
    losses = [[], []]  # recode loss for two networks

    for epoch in range(EPOCH):
        print('Epoch: ', epoch)
        layer_inputs, pre_acts = [], []
        # 训练两个网络
        for net, l in zip(nets, losses):
            net.eval()              # set eval mode to fix moving_mean and moving_var
            pred, layer_input, pre_act = net(test_x)
            l.append(loss_func(pred, test_y).data.item())
            layer_inputs.append(layer_input)
            pre_acts.append(pre_act)
            net.train()             # free moving_mean and moving_var
        plot_histogram(*layer_inputs, *pre_acts)     # plot histogram

        for step, (b_x, b_y) in enumerate(train_loader):
            for net, opt in zip(nets, opts):     # train for each network
                # 获取到预测值
                pred, _, _ = net(b_x)
                # 计算loss
                loss = loss_func(pred, b_y)
                # 梯度清零
                opt.zero_grad()
                # 误差反向传播
                loss.backward()
                # 逐步优化网络参数
                opt.step()    # it will also learns the parameters in Batch Normalization

    # 关闭动态绘制
    plt.ioff()

    # plot training loss
    # 绘制loss图
    plt.figure(2)
    plt.plot(losses[0], c='#FF9359', lw=3, label='Original')
    plt.plot(losses[1], c='#74BCFF', lw=3, label='Batch Normalization')
    plt.xlabel('step')
    plt.ylabel('test loss')
    plt.ylim((0, 2000))
    plt.legend(loc='best')

    # evaluation
    # set net to eval mode to freeze the parameters in batch normalization layers
    [net.eval() for net in nets]    # set eval mode to fix moving_mean and moving_var
    preds = [net(test_x)[0] for net in nets]
    plt.figure(3)
    # 测试拟合效果
    plt.plot(test_x.data.numpy(), preds[0].data.numpy(), c='#FF9359', lw=4, label='Original')
    plt.plot(test_x.data.numpy(), preds[1].data.numpy(), c='#74BCFF', lw=4, label='Batch Normalization')
    plt.scatter(test_x.data.numpy(), test_y.data.numpy(), c='r', s=50, alpha=0.2, label='train')
    plt.legend(loc='best')
    plt.show()

运行结果

深度学习——批标准化Batch Normalization_第1张图片
深度学习——批标准化Batch Normalization_第2张图片
深度学习——批标准化Batch Normalization_第3张图片

你可能感兴趣的:(深度学习,PyTorch,深度学习,人工智能,batch)