- 《Java八股文の文艺复兴》第四篇:ThreadLocal的平行宇宙——弱引用是通往OOM的时空虫洞?
程序猿chen
面霸の自我修养(面试篇)「Java八股文の文艺复兴」java开发语言后端面试跳槽职场和发展安全
楔子:量子泡沫中的幽灵代码"当你在ThreadLocal中写入秘密时,整个宇宙的线程都在窥视它。"上一场战役我们封印了ConcurrentHashMap的熵增奇点,但新的危机正在量子泡沫中酝酿。在某个平行宇宙里,一行看似无害的threadLocal.set(user)正在撕裂JVM的内存维度,而弱引用竟成为打开OOM虫洞的钥匙。此刻,让我们戴上RASP打造的因果律护目镜,穿越ThreadLocal
- 软件测试面试题
bobob_
Testing
您所熟悉的测试用例设计方法都有哪些?请分别以具体的例子来说明这些方法在测试用例设计工作中的应用。答:有黑盒和白盒两种测试种类,黑盒有等价类划分法,边界分析法,因果图法和错误猜测法。白盒有逻辑覆盖法,循环测试路径选择,基本路径测试。例子:在一次输入多个条件的完整性查询中。利用等价类划分法则和边界分析法则,首先利用等价划分法,可以一个或多个结果是OK的测试用例,然后确认多个NG的测试用例,然后利用边界
- 机器学习的下一个前沿是因果推理吗?——探索机器学习的未来方向!
真智AI
人工智能机器学习
机器学习的进化:从预测到因果推理机器学习凭借强大的预测能力,已经彻底改变了多个行业。然而,要实现真正的突破,机器学习还需要克服实践和计算上的挑战,特别是在因果推理方面的应用。未来,因果推理或许将成为推动机器学习发展的新前沿。什么是因果推理,它如何与机器学习相关?如果你和我一样没有数学背景,你可能会好奇“因果推理”到底意味着什么?它与机器学习又有什么关系?当我刚开始学习机器学习时,第一次听到“因果推
- 算法手撕面经系列(1)--手撕多头注意力机制
夜半罟霖
算法python深度学习
多头注意力机制 一个简单的多头注意力模块可以分解为以下几个步骤:先不分多头,对输入张量分别做变换,得到Q,K,VQ,K,VQ,K,V对得到的Q,K,VQ,K,VQ,K,V按头的个数进行split;用Q,KQ,KQ,K计算向量点积考虑是否要添因果mask利softmax计算注意力得分矩阵atten对注意力得分矩阵施加Dropout将atten矩阵和VVV矩阵相乘再过一道最终的输出变换代码 给出一个d
- 模型可解释性:基于因果推理的反事实生成与决策可视化
燃灯工作室
Ai人工智能数学建模学习机器学习
1.技术原理与数学公式1.1因果推理基础结构方程模型(SEM):X=fX(PaX,UX)X=f_X(Pa_X,U_X)X=fX(PaX,UX)其中PaXPa_XPaX为父节点集合,UXU_XUX为外生变量反事实定义:YX=x(u)=Ydo(X=x)(u)Y_{X=x}(u)=Y_{do(X=x)}(u)YX=x(u)=Ydo(X=x)(u)表示在相同背景条件uuu下,强制变量XXX取xxx时的结果
- 搜广推校招面经四十四
Y1nhl
搜广推面经python机器学习人工智能pytorch开发语言
快手主站推荐算法一、因果里面前门准则是什么(Front-DoorCriterion)前门准则是因果推断中的一个重要概念,用于在存在未观测混杂因素的情况下识别因果效应。它由朱迪亚·珀尔(JudeaPearl)提出,是后门准则的补充。1.1.定义前门准则适用于以下情况:存在一个中介变量MMM,它完全介导了处理变量XXX对结果变量YYY的因果效应。处理变量XXX和结果变量YYY之间存在未观测的混杂因素U
- 【学习思维模型】
宇希啊
思维模型学习
学习思维模型一、理解类模型二、记忆类模型三、解决问题类模型四、结构化学习模型五、效率与习惯类模型六、高阶思维模型七、实践建议八、新增学习思维模型**1.波利亚问题解决四步法****2.主动回忆(ActiveRecall)****3.鱼骨图(因果图/IshikawaDiagram)****4.MECE原则(MutuallyExclusive,CollectivelyExhaustive)****5.
- AIGC实战——Transformer模型
盼小辉丶
AIGCtransformer深度学习
AIGC实战——Transformer模型0.前言1.T52.GPT-3和GPT-43.ChatGPT小结系列链接0.前言我们在GPT(GenerativePre-trainedTransformer)一节所构建的GPT模型是一个解码器Transformer,它逐字符地生成文本字符串,并使用因果掩码只关注输入字符串中的前一个单词。另一些编码器Transformer,不使用因果掩码,而是关注整个输入
- 文本标注工具(brat)
deepdata_cn
文本标注文本标注
文本标注是自然语言处理领域中的一项基础且关键的任务,它主要是指专业的标注人员或借助特定的标注工具,按照一定的规则和标准,对文本内容进行标记和注释,从而赋予文本特定的语义信息和结构信息。具体来说,标注人员会根据任务需求,在文本中识别并标记出各种元素,比如将文本中的人名、地名、组织机构名等标注为不同的实体类型,确定文本中不同实体之间存在的关系,像因果关系、所属关系等,还会对文本中的特定事件进行标注,记
- 双盲机制(信念,欲望):模型上下文通常会包含所有信,双盲机制屏蔽:每个智能体分别进行独立的模型调用
ZhangJiQun&MXP
教学2021AIpython2024大模型以及算力人工智能androidpython自然语言处理pycharm
如何让人工智能生成的说服性对话更接近真实的日常交流目录如何让人工智能生成的说服性对话更接近真实的日常交流**一、核心创新点解析****1.双盲对话生成机制****2.因果心理理论指导****3.多智能体协作框架ToMMA****二、实验结论****三、论文贡献**怎么代码中实现Agent的双盲场景假设代码实现代码解释注意事项模型上下文通常会包含所有信,双盲机制屏蔽:每个智能体分别进行独立的模型调用
- 因果推断在智能广告中的实践
AI天才研究院
计算AI大模型应用入门实战与进阶大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA计算AI大模型应用
非常感谢您提出这个有趣的话题。让我们一步步设计一个关于"因果推断在智能广告中的实践"的系统架构。这个项目将涉及复杂的数据分析、机器学习和广告投放系统,我们需要仔细考虑各个方面以确保系统的有效性和可扩展性。文章目录因果推断在智能广告中的实践-系统架构设计1.需求分析1.1功能需求1.2非功能性需求2.系统概述2.1高层次系统描述2.2主要组件及关系2.3系统核心流程3.详细架构设计3.1数据收集模块
- 音频进阶学习十六——LTI系统的差分方程与频域分析一(频率响应)
山河君
#语音信号处理学习信号处理音视频
文章目录前言一、差分方程的有理式1.差分方程的有理分式2.因果系统和ROC3.稳定性与ROC二、频率响应1.定义2.幅频响应3.相频响应4.群延迟总结前言本篇文章会先复习Z变换的有理分式,这是之前文章中提过的内容,这里会将差分方程和有理分式进行结合来看。主要是通过有理分式进行对于冲激响应的表达,以及根据导函数对于频率响应的介绍。本文会对Z变换的频率响应中的幅频响应、相频响应以及群延迟的表达式进行推
- 在数据分析工作中运用因果推断模型的实践指南
theskylife
#因果分析数据分析大数据人工智能AI因果分析
目录1.写在开头2.因果推断模型的基础2.1因果关系vs.相关关系2.2基本概念和术语3.常见的因果推断方法3.1随机对照试验(RCTs)3.2工具变量法(IV)3.3回归不连续设计(RDD)4.因果推断的实际应用4.1案例研究1:使用RCTs分析营销活动的效果4.1.1背景和问题描述4.1.2实验设计和数据收集4.1.3数据分析和结果解释4.2案例研究2:应用工具变量法解决价格对销量的影响问题4
- 困惑度的估计
转码的小石
语言模型
固定长度模型的困惑度(Perplexity,PPL)困惑度(PPL)是评估语言模型性能的常用指标。需要注意的是,这个指标专门适用于经典的语言模型(有时称为自回归模型或因果语言模型),而对于像BERT这样的掩码语言模型,则定义不太清楚(请参考模型总结)。经典语言模型:经典语言模型的目标是计算给定一段文本的概率,具体来说,就是计算一个序列中每个token的条件概率,n-gram模型是最基础的经典语言模
- 推理模型时代:大语言模型如何从对话走向深度思考?
深度学习机器
优质项目RAG大语言模型语言模型人工智能开源
一、对话模型和推理模型的区别概述对话模型是专门用于问答交互的语言模型,符合人类的聊天方式,返回的内容可能仅仅只是一个简短的答案,一般模型名称后面会带有「chat」字样。推理模型是比较新的产物,没有明确的定义,一般是指输出过程中带有和或其他表示思考过程的模型,在返回的内容中可以明确看到模型自身存在思考和反思行为。两者的区别可以概括如下:维度推理模型对话模型核心目标解决复杂逻辑推理、数学计算、因果推断
- 为AI聊天工具添加一个知识系统 之113 详细设计之54 Chance:偶然和适配 之2
一水鉴天
软件智能智能制造人工语言开发语言人工智能
本文要点要点祖传代码中的”槽“(占位符变量)和它在实操中的三种槽(占据槽,请求槽和填充槽,实时数据库(source)中数据(流入ETL的一个正序流程行列并发靶向整形绑定变量)是如何通过“命名所依的AI行为”、“分类所缘的因果结构”和“求实所据的机器特征”(元数据仓库OLAP的三个行式并行服务进程锚定配形-限定变量)来精确锚定ETL任务绑定中的这个绑定到底是,谁和谁的什么绑定(资源存储库随着ETL的
- 软件工程-软件测试
Wlq0415
软件工程软件工程
目录测试的目的测试原则测试过程传统软件的测试策略单元测试的测试内容(考点)集成测试确认测试准则/有效性测试测试方法黑盒测试等价类划分边界值分析错误推测因果图判定表白盒测试WEB服务器测试测试的目的就是希望能以最少的人力和时间发现潜在的各种错误和缺陷。测试原则应尽早、不断地进行测试。测试工作应该避免由原开发软件的人或小组承担在设计测试方案时,不仅要确定输入数据,而且要根据系统功能确定预期输出结果。在
- 【深入探索-deepseek】高等数学与AI的因果关系
我的青春不太冷
人工智能机器学习数学
目录数学在AI不同领域的应用区别一、计算机视觉领域1.线性代数2.微积分3.概率论与统计二、自然语言处理领域三、语音识别领域四、数学在AI不同领域应用的逻辑图五、参考资料数学在AI不同领域的应用区别一、计算机视觉领域1.线性代数图像变换:想象我们有一张二维图片,图片里有个点,它的位置用坐标((x,y))表示。现在我们想把这个点绕着图片的原点(就像把纸钉在墙上,以钉子的位置为中心)逆时针旋转一定角度
- 软件测试用例设计方法:正交试验冲锋
测试老哥
测试用例python软件测试自动化测试测试工具功能测试职场和发展
点击文末小卡片,免费获取软件测试全套资料,资料在手,涨薪更快1、引言上篇讲了因果图和判定表法,而这两种方法在变量值很多、排列组合数量极大的场景下,会生成非常庞大且冗余的测试用例,此时我们很难对所有组合场景进行全量测试用例覆盖,基于此短板,正交试验法应运而生。2、概念及原理2.1定义正交试验法是研究多因素、多水平的一种试验法,它是利用正交表来对试验进行设计,通过少数的试验替代全面试验思想:用部分试验
- 【时序预测】-深度学习系列
TIM老师
时序预测深度学习时序预测
Wavenet(2016)重点:CNN系列+因果卷积+膨胀卷积核心:确保了输出的时间点只依赖于输入序列中时间戳早于或等于该输出时间点的数据,核心模块膨胀卷积能够扩大卷积层的感受野,从而更充分学习序列的全局信息。DeepAR(2017Amazon)DeepAR:ProbabilisticForecastingwithAutoregressiveRecurrentNetworks重点:RNN系列+多元
- 主题聚类:精炼信息的关键步骤
XianxinMao
聚类数据挖掘机器学习
标题:主题聚类:精炼信息的关键步骤文章信息摘要:主题聚类是一种关键的信息整合方法,通过识别相似主题、合并重复内容并保留最完整、准确的版本来优化信息结构。这一过程不仅减少了信息冗余,还提高了信息的质量和可用性,广泛应用于学术研究、内容创作和数据分析等领域。逻辑层级的建立则帮助区分主要和次要观点,识别因果关系,构建清晰的逻辑框架,使观点更具说服力。信息完整性要求每个观点都得到完整表达,补充必要的上下文
- 因果推断与机器学习—因果表征学习与泛化能力
樱花的浪漫
因果推断机器学习学习人工智能深度学习自然语言处理计算机视觉
近十年来,深度学习在多个领域取得了巨大成功,包括机器视觉、自然语言处理、语音识别和生物信息等。这些成功为机器学习技术的进一步发展和应用奠定了基础。表征学习是深度学习的核心技术之一。在机器学习问题中,其主要目的是从观测到的低级变量中提取信息,进而学习到能够准确预测目标变量的高级变量。这种从低层次到高层次变量的学习过程,有助于模型更好地理解数据和进行预测。以德国马克斯-普朗克研究所的BernhardS
- 第二篇:多模态技术突破——DeepSeek如何重构AI的感知与认知边界
python算法(魔法师版)
动态规划
——从跨模态对齐到因果推理的工程化实践在AI技术从单一模态向多模态跃迁的关键阶段,DeepSeek通过自研的多模态融合框架,在视觉-语言-语音的联合理解与生成领域实现系统性突破。本文将从技术实现层面,解构其跨模态表征学习、动态融合机制与因果推理能力的内在创新。1.跨模态对齐革命:时空一致性建模传统多模态模型常面临模态割裂问题,DeepSeek提出「时空同步对比学习」(ST-CL)框架:视觉-语言对
- 因果关系推断与机器学习
hhhh106
读书笔记大数据
因果关系定义设X和Y是两个随机变量。定义X是Y的因,即因果关系X→Y存在,当且仅当Y的取值一定会随X的取值变化而发生变化。两个变量X、Y之间有相关性往往不是我们能判断它们之间有因果关系的依据。其中包括三种情况:X是Y的因、X是Y的果、X与Y有共同原因(commoncause)。对于第三种情况,我们把这种不是因果关系的相关性叫作虚假相关(spuriouscorrelation)。机器学习模型是强大的
- 【深度学习】因果推断与机器学习的高级实践 数学建模_问题根因 分析 机器学习
2401_84239830
程序员深度学习机器学习数学建模
现阶段深度学习有三大特征:数据驱动:即数据训练,将数据输入到模型中进行训练;关联学习:模型基于给定训练数据集,进行关联学习;概率输出:即最后的输出,判断这个图片有“狗“的概率是多少。以数据驱动、关联学习、概率输出为特征的深度学习存在什么问题呢?以一个简单的图片识别问题为例:识别一张图片中是否有狗。在很多预测问题中,我们拿到的数据集往往都是有偏的,比如我们拿到的数据中有80%的图片中狗都在草地上,这
- 因果推断与机器学习—因果推断入门(1)
樱花的浪漫
因果推断机器学习人工智能计算机视觉搜索引擎深度学习算法
在机器学习被广泛应用于对人类产生巨大影响的场景(如社交网络、电商、搜索引擎等)的今天,因果推断的重要性开始在机器学习社区的论文和演讲中被不断提及。图灵奖得主YoshuaBengio在对系统2(system2,这个说法来自心理学家DanielKahneman的作品,人类大脑由两套系统构成:系统1负责快速思考,做出下意识的反应;系统2则负责比较耗时的思考,如理解事物之间的因果关系)的畅想中强调,在实现
- 5. 言语理解与表达 5-中心理解题-关联词因果
上岸学堂
行测小白到上岸-言语理解与表达行测百日上岸计划人工智能经验分享学习职场和发展大数据java
关联词-因果核心特征结论是重点:在因果关系中,结论通常是文段的中心内容。典型格式:因为……所以……由于……因此……结论句位置结论句的位置对解题有重要影响,主要有以下几种情况:结论句在结尾这是最常见的情况,也是最容易识别的。例:“近年来,我国持续加大环境保护力度,实施了一系列严格的污染防治措施。因此,空气质量明显改善,PM2.5浓度大幅下降。”在这个例子中,结论"空气质量明显改善,PM2.5浓度大幅
- 软件测试学习路线
IT菇凉
单元测试jmeter功能测试
软件测试学习路线1.软件测试基础知识内容软件测试职业以及发展定位软件测试的概述&原则软件测试的策略及详细讲解软件测试的生命周期软件测试工作流程软件需求分析制作详解软件测试计划的编写软件测试用例的常用方法–等价类,边界值软件测试用例的常用方法–因果图,判定表测试用例的常用方法–状态迁移图;场景法软件测试环境准备&团队组织架构&职责划分bug编写规范,教你写出不low的缺陷bug的流转与状态处理缺陷编
- 嵌入式工程师必学(99):直流电路定理
芯片-嵌入式
嵌入式硬件
线性度属性LinearityProperty线性是描述因果之间线性关系的元素的属性。它是均匀性和可加性特性的组合。齐次性属性要求,如果输入(激励)乘以一个常数,则输出(响应)乘以相同的常数。例如,对于电阻,欧姆定律将输入i与输出v相关联:v=iR。如果i增加一个常数k,则v相应地增加k;那是可加性属性要求对输入之和的响应是对单独应用的每个输入的响应之和。因此,对于电阻,如果V1=i1R
- 分布式因果推断在美团履约平台的探索与实践 思维导图-java架构
用心去追梦
java架构开发语言
为了创建一个关于“分布式因果推断在美团履约平台的探索与实践”的思维导图,并且专注于Java架构下的实现,我们可以将这个主题分解为几个关键领域。这包括:项目背景、因果推断的基本概念、数据收集与预处理、分布式系统设计、算法选择与实现、性能优化策略、以及效果评估与迭代。以下是这个主题的思维导图结构建议:思维导图结构1.项目背景美团履约平台简介平台业务流程(如外卖配送、闪购等)履约效率的重要性分布式因果推
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s