GAN

Generative Adversarial Networks

GAN启发自博弈论中的二人零和博弈,两位博弈方的利益之和为零或一个常数,即一方有所得,另一方必有所失。GAN模型中的两位博弈方分别由生成式模型(generative model)和判别式模型(discriminative model)充当。生成模型G捕捉样本数据的分布,判别模型D是一个二分类器,估计一个样本来自于训练数据(而非生成数据)的概率。G和D一般都是非线性映射函数,例如多层感知机、卷积神经网络等。

这俩的相同点是:都可以看成是一个黑匣子,接受输入然后有一个输出,类似一个函数,一个输入输出映射。

不同点是:

生成模型功能:比作是一个样本生成器,输入一个噪声/样本,然后把它包装成一个逼真的样本,也就是输出。

判别模型:比作一个二分类器(如同0-1分类器),来判断输入的样本是真是假。(就是输出值大于0.5还是小于0.5);

直接上一张个人觉得解释的好的图说明:

这里写图片描述

之前,我们首先明白在使用GAN的时候的2个问题

我们有什么?

比如上面的这个图,我们有的只是真实采集而来的人脸样本数据集,仅此而已,而且很关键的一点是我们连人脸数据集的类标签都没有,也就是我们不知道那个人脸对应的是谁。

我们要得到什么

至于要得到什么,不同的任务得到的东西不一样,我们只说最原始的GAN目的,那就是我们想通过输入一个噪声,模拟得到一个人脸图像,这个图像可以非常逼真以至于以假乱真。

好了再来理解下GAN的两个模型要做什么。首先判别模型,就是图中右半部分的网络,直观来看就是一个简单的神经网络结构,输入就是一副图像,输出就是一个概率值,用于判断真假使用(概率值大于0.5那就是真,小于0.5那就是假),真假也不过是人们定义的概率而已。其次是生成模型,生成模型要做什么呢,同样也可以看成是一个神经网络模型,输入是一组随机数Z,输出是一个图像,不再是一个数值而已。从图中可以看到,会存在两个数据集,一个是真实数据集,这好说,另一个是假的数据集,那这个数据集就是有生成网络造出来的数据集。好了根据这个图我们再来理解一下GAN的目标是要干什么:

判别网络的目的:就是能判别出来属于的一张图它是来自真实样本集还是假样本集。假如输入的是真样本,网络输出就接近1,输入的是假样本,网络输出接近0,那么很完美,达到了很好判别的目的。

生成网络的目的:生成网络是造样本的,它的目的就是使得自己造样本的能力尽可能强,强到什么程度呢,你判别网络没法判断我是真样本还是假样本。

有了这个理解我们再来看看为什么叫做对抗网络了。判别网络说,我很强,来一个样本我就知道它是来自真样本集还是假样本集。生成网络就不服了,说我也很强,我生成一个假样本,虽然我生成网络知道是假的,但是你判别网络不知道呀,我包装的非常逼真,以至于判别网络无法判断真假,那么用输出数值来解释就是,生成网络生成的假样本进去了判别网络以后,判别网络给出的结果是一个接近0.5的值,极限情况就是0.5,也就是说判别不出来了,这就是纳什平衡了。

 

由这个分析可以发现,生成网络与判别网络的目的正好是相反的,一个说我能判别的好,一个说我让你判别不好。所以叫做对抗,叫做博弈。那么最后的结果到底是谁赢呢?这就要归结到设计者,也就是我们希望谁赢了。作为设计者的我们,我们的目的是要得到以假乱真的样本,那么很自然的我们希望生成样本赢了,也就是希望生成样本很真,判别网络能力不足以区分真假样本位置。

再理解

知道了GAN大概的目的与设计思路,那么一个很自然的问题来了就是我们该如何用数学方法解决这么一个对抗问题。这就涉及到如何训练这样一个生成对抗网络模型了,还是先上一个图,用图来解释最直接:

这里写图片描述

需要注意的是生成模型与对抗模型可以说是完全独立的两个模型,好比就是完全独立的两个神经网络模型,他们之间没有什么联系。

好了那么训练这样的两个模型的大方法就是:单独交替迭代训练

什么意思?因为是2个网络,不好一起训练,所以才去交替迭代训练,我们一一来看。 
假设现在生成网络模型已经有了(当然可能不是最好的生成网络),那么给一堆随机数组,就会得到一堆假的样本集(因为不是最终的生成模型,那么现在生成网络可能就处于劣势,导致生成的样本就不咋地,可能很容易就被判别网络判别出来了说这货是假冒的),但是先不管这个,假设我们现在有了这样的假样本集,真样本集一直都有,现在我们人为的定义真假样本集的标签,因为我们希望真样本集的输出尽可能为1,假样本集为0,很明显这里我们就已经默认真样本集所有的类标签都为1,而假样本集的所有类标签都为0. 有人会说,在真样本集里面的人脸中,可能张三人脸和李四人脸不一样呀,对于这个问题我们需要理解的是,我们现在的任务是什么,我们是想分样本真假,而不是分真样本中那个是张三label、那个是李四label。况且我们也知道,原始真样本的label我们是不知道的。回过头来,我们现在有了真样本集以及它们的label(都是1)、假样本集以及它们的label(都是0),这样单就判别网络来说,此时问题就变成了一个再简单不过的有监督的二分类问题了,直接送到神经网络模型中训练就完事了。假设训练完了,下面我们来看生成网络。

对于生成网络,想想我们的目的,是生成尽可能逼真的样本。那么原始的生成网络生成的样本你怎么知道它真不真呢?就是送到判别网络中,所以在训练生成网络的时候,我们需要联合判别网络一起才能达到训练的目的。什么意思?就是如果我们单单只用生成网络,那么想想我们怎么去训练?误差来源在哪里?细想一下没有,但是如果我们把刚才的判别网络串接在生成网络的后面,这样我们就知道真假了,也就有了误差了。所以对于生成网络的训练其实是对生成-判别网络串接的训练,就像图中显示的那样。好了那么现在来分析一下样本,原始的噪声数组Z我们有,也就是生成了假样本我们有,此时很关键的一点来了,我们要把这些假样本的标签都设置为1,也就是认为这些假样本在生成网络训练的时候是真样本。那么为什么要这样呢?我们想想,是不是这样才能起到迷惑判别器的目的,也才能使得生成的假样本逐渐逼近为正样本。好了,重新顺一下思路,现在对于生成网络的训练,我们有了样本集(只有假样本集,没有真样本集),有了对应的label(全为1),是不是就可以训练了?有人会问,这样只有一类样本,训练啥呀?谁说一类样本就不能训练了?只要有误差就行。还有人说,你这样一训练,判别网络的网络参数不是也跟着变吗?没错,这很关键,所以在训练这个串接的网络的时候,一个很重要的操作就是不要判别网络的参数发生变化,也就是不让它参数发生更新,只是把误差一直传,传到生成网络那块后更新生成网络的参数。这样就完成了生成网络的训练了。

在完成生成网络训练好,那么我们是不是可以根据目前新的生成网络再对先前的那些噪声Z生成新的假样本了,没错,并且训练后的假样本应该是更真了才对。然后又有了新的真假样本集(其实是新的假样本集),这样又可以重复上述过程了。我们把这个过程称作为单独交替训练。我们可以实现定义一个迭代次数,交替迭代到一定次数后停止即可。这个时候我们再去看一看噪声Z生成的假样本会发现,原来它已经很真了。

看完了这个过程是不是感觉GAN的设计真的很巧妙,个人觉得最值得称赞的地方可能在于这种假样本在训练过程中的真假变换,这也是博弈得以进行的关键之处。

进一步

文字的描述相信已经让大多数的人知道了这个过程,下面我们来看看原文中几个重要的数学公式描述,首先我们直接上原始论文中的目标公式吧:

你可能感兴趣的:(GAN)