一、数据集
1、目标
知道数据集分为训练集和测试集
会使用sklearn的数据集
2、可用数据集
公司内部,比如百度、微博
数据接口,花钱
政府拥有的数据集
3、在学习阶段用到的数据集
scikit-learn特点:
(1)数据量较小
(2)方便学习
UCI特点:
(1)收录了360个数据集
(2)覆盖科学、生活、经济等领域
(3)数据量几十万
kaggle特点:
(1)大数据竞赛平台
(2)80万科学家
(3)真实数据
(4)数据量巨大
4、网址
kaggle网址:https://www.kaggle.com/datasets
UCI网址:http://archive.ics.uci.edu/ml
scikit-learn网址:http://scikit-learn.org/stable/datasets
5、scikit-learn工具介绍
Machine Learning with Scikit-Learn
(1)python语言的机器学习工具
(2)scikit-learn包含许多知名的机器学习算法的实现
(3)scikit-learn文档完善,容易上手,丰富的API
6、安装scikit-learn
yum install python3 python3-pip ipython
pip3 install -U scikit-learn
7、验证安装
$ python3 -m pip show scikit-learn
Name: scikit-learn
Version: 0.24.2
Summary: A set of python modules for machine learning and data mining
Home-page: http://scikit-learn.org
Author: None
Author-email: None
License: new BSD
Location: /usr/local/lib64/python3.6/site-packages
Requires: joblib, scipy, numpy, threadpoolctl
$ python3 -m pip freeze
joblib==1.1.1
numpy==1.19.5
scikit-learn==0.24.2
scipy==1.5.4
threadpoolctl==3.1.0
$ python3 -c "import sklearn; sklearn.show_versions()"
System:
python: 3.6.8 (default, Jun 20 2023, 11:53:23) [GCC 4.8.5 20150623 (Red Hat 4.8.5-44)]
executable: /usr/bin/python3
machine: Linux-3.10.0-1160.92.1.el7.x86_64-x86_64-with-centos-7.9.2009-Core
Python dependencies:
pip: 9.0.3
setuptools: 39.2.0
sklearn: 0.24.2
numpy: 1.19.5
scipy: 1.5.4
Cython: None
pandas: None
matplotlib: None
joblib: 1.1.1
threadpoolctl: 3.1.0
Built with OpenMP: True
(1)分类、聚类、回归
(2)特征工程
(3)模型选择、调优
二、sklearn数据集
1、scikit-learn数据集API介绍
(1)sklearn.datasets
加载获取流行数据集
datasets.load_*()
获取小规模数据集,数据包含在datasets里
datasets.fetch_*(data_home=None)
获取大规模数据集,需要从网上下载,函数的第一个参数是data_home,表示数据集下载的目录,默认是~/scikit_learn_data/
2、sklearn小数据集
(1)sklearn.datasets.load_iris()
加载并返回鸢尾花数据集
名称 | 数量 |
类别 | 3 |
特征 | 4 |
样本数量 | 150 |
每个类别数量 | 50 |
(2)sklearn.datasets.load_boston()
加载并返回波士顿房价数据集
名称 | 数量 |
目标类别 | 5-50 |
特征 | 13 |
样本数量 | 506 |
3、sklearn大数据集
(1)sklearn.datasets.fetch_20newsgroups(data_home=None,subset='train')
subset:'train'或者'test','all',可选,选择要加载的数据集
训练集的"训练",测试集的"测试",两者的"全部"
4、sklearn数据集的使用
(1)以鸢尾花数据集为例
鸢尾花数据集
特征值--4个:花瓣、花瓣的长度、宽度
目标值--3个:setosa,vericolor,virginica
(2)sklearn数据集返回值介绍
load和fetch返回的数据类型datasets.base.Bunch(字典格式)
data:特征数据数组,是 [n_samples * n_features] 的二维numpy.ndarray数组
target:标签数据,是n_samples的一维numpy.ndarray数组
DESCR:数据描述
feature_names:特证名。新闻数据、手写数字、回归数据集没有
target_names:标签名
(3)建立文件day01_machine_learning.py
from sklearn.datasets import load_iris
def datasets_demo():
"""
sklearn数据集使用
"""
#获取数据集
iris = load_iris()
print("鸢尾花数据集:\n", iris)
print("查看数据集描述:\n", iris["DESCR"])
print("查看特征值的名字:\n", iris.feature_names)
print("查看特征值几行几列:\n", iris.data.shape)
return None
if __name__ == "__main__":
# 代码1:sklearn数据集使用
datasets_demo()
运行:python3 day01_machine_learning.py
鸢尾花数据集:
{'data': array([[5.1, 3.5, 1.4, 0.2],
[4.9, 3. , 1.4, 0.2],
[4.7, 3.2, 1.3, 0.2],
[4.6, 3.1, 1.5, 0.2],
[5. , 3.6, 1.4, 0.2],
[5.4, 3.9, 1.7, 0.4],
[4.6, 3.4, 1.4, 0.3],
[5. , 3.4, 1.5, 0.2],
[4.4, 2.9, 1.4, 0.2],
[4.9, 3.1, 1.5, 0.1],
[5.4, 3.7, 1.5, 0.2],
[4.8, 3.4, 1.6, 0.2],
[4.8, 3. , 1.4, 0.1],
[4.3, 3. , 1.1, 0.1],
[5.8, 4. , 1.2, 0.2],
[5.7, 4.4, 1.5, 0.4],
[5.4, 3.9, 1.3, 0.4],
[5.1, 3.5, 1.4, 0.3],
[5.7, 3.8, 1.7, 0.3],
[5.1, 3.8, 1.5, 0.3],
[5.4, 3.4, 1.7, 0.2],
[5.1, 3.7, 1.5, 0.4],
[4.6, 3.6, 1. , 0.2],
[5.1, 3.3, 1.7, 0.5],
[4.8, 3.4, 1.9, 0.2],
[5. , 3. , 1.6, 0.2],
[5. , 3.4, 1.6, 0.4],
[5.2, 3.5, 1.5, 0.2],
[5.2, 3.4, 1.4, 0.2],
[4.7, 3.2, 1.6, 0.2],
[4.8, 3.1, 1.6, 0.2],
[5.4, 3.4, 1.5, 0.4],
[5.2, 4.1, 1.5, 0.1],
[5.5, 4.2, 1.4, 0.2],
[4.9, 3.1, 1.5, 0.2],
[5. , 3.2, 1.2, 0.2],
[5.5, 3.5, 1.3, 0.2],
[4.9, 3.6, 1.4, 0.1],
[4.4, 3. , 1.3, 0.2],
[5.1, 3.4, 1.5, 0.2],
[5. , 3.5, 1.3, 0.3],
[4.5, 2.3, 1.3, 0.3],
[4.4, 3.2, 1.3, 0.2],
[5. , 3.5, 1.6, 0.6],
[5.1, 3.8, 1.9, 0.4],
[4.8, 3. , 1.4, 0.3],
[5.1, 3.8, 1.6, 0.2],
[4.6, 3.2, 1.4, 0.2],
[5.3, 3.7, 1.5, 0.2],
[5. , 3.3, 1.4, 0.2],
[7. , 3.2, 4.7, 1.4],
[6.4, 3.2, 4.5, 1.5],
[6.9, 3.1, 4.9, 1.5],
[5.5, 2.3, 4. , 1.3],
[6.5, 2.8, 4.6, 1.5],
[5.7, 2.8, 4.5, 1.3],
[6.3, 3.3, 4.7, 1.6],
[4.9, 2.4, 3.3, 1. ],
[6.6, 2.9, 4.6, 1.3],
[5.2, 2.7, 3.9, 1.4],
[5. , 2. , 3.5, 1. ],
[5.9, 3. , 4.2, 1.5],
[6. , 2.2, 4. , 1. ],
[6.1, 2.9, 4.7, 1.4],
[5.6, 2.9, 3.6, 1.3],
[6.7, 3.1, 4.4, 1.4],
[5.6, 3. , 4.5, 1.5],
[5.8, 2.7, 4.1, 1. ],
[6.2, 2.2, 4.5, 1.5],
[5.6, 2.5, 3.9, 1.1],
[5.9, 3.2, 4.8, 1.8],
[6.1, 2.8, 4. , 1.3],
[6.3, 2.5, 4.9, 1.5],
[6.1, 2.8, 4.7, 1.2],
[6.4, 2.9, 4.3, 1.3],
[6.6, 3. , 4.4, 1.4],
[6.8, 2.8, 4.8, 1.4],
[6.7, 3. , 5. , 1.7],
[6. , 2.9, 4.5, 1.5],
[5.7, 2.6, 3.5, 1. ],
[5.5, 2.4, 3.8, 1.1],
[5.5, 2.4, 3.7, 1. ],
[5.8, 2.7, 3.9, 1.2],
[6. , 2.7, 5.1, 1.6],
[5.4, 3. , 4.5, 1.5],
[6. , 3.4, 4.5, 1.6],
[6.7, 3.1, 4.7, 1.5],
[6.3, 2.3, 4.4, 1.3],
[5.6, 3. , 4.1, 1.3],
[5.5, 2.5, 4. , 1.3],
[5.5, 2.6, 4.4, 1.2],
[6.1, 3. , 4.6, 1.4],
[5.8, 2.6, 4. , 1.2],
[5. , 2.3, 3.3, 1. ],
[5.6, 2.7, 4.2, 1.3],
[5.7, 3. , 4.2, 1.2],
[5.7, 2.9, 4.2, 1.3],
[6.2, 2.9, 4.3, 1.3],
[5.1, 2.5, 3. , 1.1],
[5.7, 2.8, 4.1, 1.3],
[6.3, 3.3, 6. , 2.5],
[5.8, 2.7, 5.1, 1.9],
[7.1, 3. , 5.9, 2.1],
[6.3, 2.9, 5.6, 1.8],
[6.5, 3. , 5.8, 2.2],
[7.6, 3. , 6.6, 2.1],
[4.9, 2.5, 4.5, 1.7],
[7.3, 2.9, 6.3, 1.8],
[6.7, 2.5, 5.8, 1.8],
[7.2, 3.6, 6.1, 2.5],
[6.5, 3.2, 5.1, 2. ],
[6.4, 2.7, 5.3, 1.9],
[6.8, 3. , 5.5, 2.1],
[5.7, 2.5, 5. , 2. ],
[5.8, 2.8, 5.1, 2.4],
[6.4, 3.2, 5.3, 2.3],
[6.5, 3. , 5.5, 1.8],
[7.7, 3.8, 6.7, 2.2],
[7.7, 2.6, 6.9, 2.3],
[6. , 2.2, 5. , 1.5],
[6.9, 3.2, 5.7, 2.3],
[5.6, 2.8, 4.9, 2. ],
[7.7, 2.8, 6.7, 2. ],
[6.3, 2.7, 4.9, 1.8],
[6.7, 3.3, 5.7, 2.1],
[7.2, 3.2, 6. , 1.8],
[6.2, 2.8, 4.8, 1.8],
[6.1, 3. , 4.9, 1.8],
[6.4, 2.8, 5.6, 2.1],
[7.2, 3. , 5.8, 1.6],
[7.4, 2.8, 6.1, 1.9],
[7.9, 3.8, 6.4, 2. ],
[6.4, 2.8, 5.6, 2.2],
[6.3, 2.8, 5.1, 1.5],
[6.1, 2.6, 5.6, 1.4],
[7.7, 3. , 6.1, 2.3],
[6.3, 3.4, 5.6, 2.4],
[6.4, 3.1, 5.5, 1.8],
[6. , 3. , 4.8, 1.8],
[6.9, 3.1, 5.4, 2.1],
[6.7, 3.1, 5.6, 2.4],
[6.9, 3.1, 5.1, 2.3],
[5.8, 2.7, 5.1, 1.9],
[6.8, 3.2, 5.9, 2.3],
[6.7, 3.3, 5.7, 2.5],
[6.7, 3. , 5.2, 2.3],
[6.3, 2.5, 5. , 1.9],
[6.5, 3. , 5.2, 2. ],
[6.2, 3.4, 5.4, 2.3],
[5.9, 3. , 5.1, 1.8]]), 'target': array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]), 'frame': None, 'target_names': array(['setosa', 'versicolor', 'virginica'], dtype='
5、思考:拿到的数据是否要全部用来训练一个模型呢?
并不是全部用来训练,要留一小部分用来验证我们的模型好不好,一般8成训练2成测试
三、数据集的划分
1、机器学习一般的数据集会划分为两个部分
(1)训练数据:用于训练,构建模型
(2)测试数据:在模型检验时使用,用于评估模型是否有效
2、划分比例
(1)训练集:70%、80%、75%
(2)测试集:30%、20%、25%
3、数据集划分api
(1)sklearn.model_selection.train_test_split(arrays, *options)
以下是arrays的参数:
x:数据集的特征值
y:数据集的标签值
以下是options的参数:
test_size:测试集的大小,一般为float
random_state:划分数据集时用的随机数种子,不同的种子会造成不同的随机采样结果。相同的种子采样结果相同
在需要设置random_state的地方给其赋一个值,当多次运行此段代码能够得到完全一样的结果,别人运行此代码也可以复现你的过程。若不设置此参数则会随机选择一个种子,执行结果也会因此而不同了
(2)返回值的顺序
return:训练集特征值,测试集特征值,训练集目标值,测试集目标值
所以定义返回值为x_train, x_test, y_train, y_test
4、修改day01_machine_learning.py
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
def datasets_demo():
"""
sklearn数据集使用
"""
#获取数据集
iris = load_iris()
print("鸢尾花数据集:\n", iris)
print("查看数据集描述:\n", iris["DESCR"])
print("查看特征值的名字:\n", iris.feature_names)
print("查看特征值几行几列:\n", iris.data.shape)
#数据集的划分
x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=22)
print("训练集的特征值:\n", x_train, x_train.shape)
return None
if __name__ == "__main__":
# 代码1:sklearn数据集使用
datasets_demo()
运行结果:(上面的部分内容省略)
训练集的特征值:
[[4.8 3.1 1.6 0.2]
[5.4 3.4 1.5 0.4]
[5.5 2.5 4. 1.3]
[5.5 2.6 4.4 1.2]
[5.7 2.8 4.5 1.3]
[5. 3.4 1.6 0.4]
[5.1 3.4 1.5 0.2]
[4.9 3.6 1.4 0.1]
[6.9 3.1 5.4 2.1]
[6.7 2.5 5.8 1.8]
[7. 3.2 4.7 1.4]
[6.3 3.3 4.7 1.6]
[5.4 3.9 1.3 0.4]
[4.4 3.2 1.3 0.2]
[6.7 3. 5. 1.7]
[5.6 3. 4.1 1.3]
[5.7 2.5 5. 2. ]
[6.5 3. 5.8 2.2]
[5. 3.6 1.4 0.2]
[6.1 2.8 4. 1.3]
[6. 3.4 4.5 1.6]
[6.7 3. 5.2 2.3]
[5.7 4.4 1.5 0.4]
[5.4 3.4 1.7 0.2]
[5. 3.5 1.3 0.3]
[4.8 3. 1.4 0.1]
[5.5 4.2 1.4 0.2]
[4.6 3.6 1. 0.2]
[7.2 3.2 6. 1.8]
[5.1 2.5 3. 1.1]
[6.4 3.2 4.5 1.5]
[7.3 2.9 6.3 1.8]
[4.5 2.3 1.3 0.3]
[5. 3. 1.6 0.2]
[5.7 3.8 1.7 0.3]
[5. 3.3 1.4 0.2]
[6.2 2.2 4.5 1.5]
[5.1 3.5 1.4 0.2]
[6.4 2.9 4.3 1.3]
[4.9 2.4 3.3 1. ]
[6.3 2.5 4.9 1.5]
[6.1 2.8 4.7 1.2]
[5.9 3.2 4.8 1.8]
[5.4 3.9 1.7 0.4]
[6. 2.2 4. 1. ]
[6.4 2.8 5.6 2.1]
[4.8 3.4 1.9 0.2]
[6.4 3.1 5.5 1.8]
[5.9 3. 4.2 1.5]
[6.5 3. 5.5 1.8]
[6. 2.9 4.5 1.5]
[5.5 2.4 3.8 1.1]
[6.2 2.9 4.3 1.3]
[5.2 4.1 1.5 0.1]
[5.2 3.4 1.4 0.2]
[7.7 2.6 6.9 2.3]
[5.7 2.6 3.5 1. ]
[4.6 3.4 1.4 0.3]
[5.8 2.7 4.1 1. ]
[5.8 2.7 3.9 1.2]
[6.2 3.4 5.4 2.3]
[5.9 3. 5.1 1.8]
[4.6 3.1 1.5 0.2]
[5.8 2.8 5.1 2.4]
[5.1 3.5 1.4 0.3]
[6.8 3.2 5.9 2.3]
[4.9 3.1 1.5 0.1]
[5.5 2.3 4. 1.3]
[5.1 3.7 1.5 0.4]
[5.8 2.7 5.1 1.9]
[6.7 3.1 4.4 1.4]
[6.8 3. 5.5 2.1]
[5.2 2.7 3.9 1.4]
[6.7 3.1 5.6 2.4]
[5.3 3.7 1.5 0.2]
[5. 2. 3.5 1. ]
[6.6 2.9 4.6 1.3]
[6. 2.7 5.1 1.6]
[6.3 2.3 4.4 1.3]
[7.7 3. 6.1 2.3]
[4.9 3. 1.4 0.2]
[4.6 3.2 1.4 0.2]
[6.3 2.7 4.9 1.8]
[6.6 3. 4.4 1.4]
[6.9 3.1 4.9 1.5]
[4.3 3. 1.1 0.1]
[5.6 2.7 4.2 1.3]
[4.8 3.4 1.6 0.2]
[7.6 3. 6.6 2.1]
[7.7 2.8 6.7 2. ]
[4.9 2.5 4.5 1.7]
[6.5 3.2 5.1 2. ]
[5.1 3.3 1.7 0.5]
[6.3 2.9 5.6 1.8]
[6.1 2.6 5.6 1.4]
[5. 3.4 1.5 0.2]
[6.1 3. 4.6 1.4]
[5.6 3. 4.5 1.5]
[5.1 3.8 1.5 0.3]
[5.6 2.8 4.9 2. ]
[4.4 3. 1.3 0.2]
[5.5 2.4 3.7 1. ]
[4.7 3.2 1.6 0.2]
[6.7 3.3 5.7 2.5]
[5.2 3.5 1.5 0.2]
[6.4 2.7 5.3 1.9]
[6.3 2.8 5.1 1.5]
[4.4 2.9 1.4 0.2]
[6.1 3. 4.9 1.8]
[4.9 3.1 1.5 0.2]
[5. 2.3 3.3 1. ]
[4.8 3. 1.4 0.3]
[5.8 4. 1.2 0.2]
[6.3 3.4 5.6 2.4]
[5.4 3. 4.5 1.5]
[7.1 3. 5.9 2.1]
[6.3 3.3 6. 2.5]
[5.1 3.8 1.9 0.4]
[6.4 2.8 5.6 2.2]
[7.7 3.8 6.7 2.2]] (120, 4)
因为test_size=0.2就是说测试集20%,训练集80%,样本一共150,所以训练集150*0.8=120