【数据结构与算法】赫夫曼树

赫夫曼树

基本介绍

  1. 给定 n 个权值作为 n 个叶子结点,构造一棵二叉树,若该树的带权路径长度(wpl)达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree),还有的书翻译为霍夫曼树。
  2. 赫夫曼树是带权路径长度最短的树,权值较大的节点离根较近。

重要概念

  1. 路径和路径长度:在一棵树中,从一个节点往下可以达到的孩子或孙子节点之间的通路,称为路径。通路中分支的数目称为路径长度,若规定根节点的层数为 1,则从根节点到第 L 层节点的路径长度为 L - 1。
  2. 节点的权及带权路径长度:若将树中节点赋给一个有着某种含义的数值,则这个数值称为该节点的权。节点的带权路径长度为:从根节点到该节点之间的路径长度与该节点的权的乘积。
  3. 树的带权路径长度:树的带权路径长度规定为所有叶子结点的带权路径长度之和,记作 wpl(weighted path length),权值越大的节点离根节点越近的二叉树才是最优二叉树。
  4. wpl 最小的就是赫夫曼树。
    【数据结构与算法】赫夫曼树_第1张图片

赫夫曼树的构建

举例:

数列{13,7,8,3,29,6,1},要求转为一棵赫夫曼树。

思路分析:

  1. 从小到大进行排序,每一个数据都是一个节点,每个节点可以看成是一棵最简单的二叉树;
  2. 取出根节点权值最小的两棵二叉树;
  3. 组成一棵新的二叉树,该新的二叉树的根节点的权值是前面两棵二叉树根节点权值的和;
  4. 再将这棵新的二叉树,以根节点的权值大小再次排序,不断重复 1,2,3,4 的步骤,知道数列中所有的数据都被处理,就得到一棵赫夫曼树。

代码实现:

public class HuffmanTree {
    public static void main(String[] args) {
        int[] arr = {13, 7, 8, 3, 29, 6, 1};
        Node huffmanTree = createHuffmanTree(arr);
        preOrder(huffmanTree);
    }

    // 前序遍历
    public static void preOrder(Node root) {
        if (root != null) {
            root.preOrder();
        } else {
            System.out.println("是空树,不能遍历~");
        }
    }

    // 创建赫夫曼树的方法
    public static Node createHuffmanTree(int[] arr) {
        // 第一步为了操作方便
        // 1. 遍历 arr 数组
        // 2. 将 arr 的每个元素构成一个 Node
        // 3. 将 Node 放入到 ArrayList 中
        List<Node> nodes = new ArrayList<>();
        for (int value : arr) {
            nodes.add(new Node(value));
        }

        // 循环,直到处理完所有数据
        while (nodes.size() > 1) {
            // 排序
            Collections.sort(nodes);
            // 取出根节点权值最小的两棵二叉树
            // (1) 取出权值最小的节点
            Node leftNode = nodes.remove(0);
            // (2) 取出权值第二小的节点
            Node rightNode = nodes.remove(0);
            // (3) 构建一棵新的二叉树
            Node parent = new Node(leftNode.value + rightNode.value);
            parent.left = leftNode;
            parent.right = rightNode;
            // (4) 将 parent 加入到 Node
            nodes.add(parent);
        }
        // 返回赫夫曼树的 Node 节点
        return nodes.get(0);
    }
}

// 创建节点类
// 为了让 Node 对象像 Collections 集合排序
// 让 Node 实现 Comparable 接口
class Node implements Comparable<Node> {
    int value; // 节点权值
    Node left; // 指向左子节点
    Node right; // 指向右子节点

    public Node(int value) {
        this.value = value;
    }

    /**
     * 前序遍历
     *
     * @return
     */
    public void preOrder() {
        System.out.println(this);
        if (this.left != null) {
            this.left.preOrder();
        }
        if (this.right != null) {
            this.right.preOrder();
        }
    }

    @Override
    public String toString() {
        return "Node{" +
                "value=" + value +
                '}';
    }

    @Override
    public int compareTo(Node o) {
        // 正序排列
        return this.value - o.value;
    }
}

你可能感兴趣的:(数据结构和算法,java,数据结构,开发语言)